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Block 20 continued:

An exampie ot randormuzation is given by the strategy of shaking a bin containing
a part in order to orient the part in a desired stable state with some high probability.
Another example consists of first using reliable sensory information to bring two parts
close together, then relying on short random motions to actually mate the two parts,
once the part motions lie below the available sensing resolution. Further examples
include tapping parts that are tightly wedged, twirling gears before trying to mesh
them, and vibrating parts to facilitate a mating operation.

Randomization is seen as a primitive strategy that arises naturally in the solution
of manipulation tasks. Randomization is as essential to the solution of tasks as are
sensing and mechanics. An understanding of the way that randomization can facilitate
task solutions is integral to the development of a theory of manipulation. Such a
theory should try to explain the relationship between solvable tasks and repertoires
of actions, with the aim of creating autonomous systems capable of existing in an
uncertain world.

The thesis expands the existing framework for generating guaranteed strategies
to include randomization as an additional operator. A special class of randomized
strategies is considered in detail, namely the class of simple feedback loops. A simple
feedback loop repeatedly considers only current sen:cd values in deciding on actiofis
to execute in order to make progress towards task completion. When progress is not
possible the feedback loop executes a randomizing motion. The thesis shows that if
the average velocity of the system points towards the goal, then the system converges
to the goal rapidly.

A simple feedback loop was implemented on a robot. The task consisted of
inserting a peg into a hole using only positicn sensing and raudvmization. The
implementation demonstrated the usefulness of randomization in solving a task for
which sensory information was poor.
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Abstrac

 Robots must act purposefully and successfully in an uncertain world. Sensory
information is inaccurate or noisy, actions may have a range of effects, and the robet’s
environment is only partially and imprecisely modelled. This thesis introduces active
randomization by a robot. both in selecting actions to execute and in focusing on
sensory information to interpret. as a basic tool for overcoming uncertainty.

An example of randomization is given by the strategy of shaking a bin containing
a part 1n order to orient the part in a desired stable state with some high probability.
Another example consists of first using reliable sensory information to bring two parts
close together. then relving or. short random motions to actually mate the two parts.
once the part motions lie below the available sensing -esolution. Fnurther examples
include tapping parts that are tightly wedged, twirling gears before trying to mesh
them. and vibrating parts to facilitate a mating operation.

Randomization is seen as a primitive strategy that arises naturally in the solution
of manipulation tasks. Randomization is as essential to the solution of tasks as are
sensing and mechanics. An understanding of the way that randomization can facilitate
task solutions is integral to the development of a theory of manipulation. Such a
theory should try to explain the relationship between solvable tasks and repertoires
of actions, with the aim of creating autonomous systems capable of existing in an
uncertain world.

The thesis expands the existing framework for generating guaranteed strategies
to include randomization as an additional operator. A special class of randomized
strategies is considered in detail, namely the class of simple feedback loops. A simple
feedback loop repeatedly considers only current sensed values in deciding on actions
to execute in order to make progress towards task completion. When progress is not
possible the feedback loop executes a randomizing motion. The thesis shows that if
the average velocity of the system points towards the goal, then the system converges
to the goal rapidly.

A simple feedback loop was implemented on a robot. The task consisted of
inserting a peg into a hole using only position sensing and randomization. The
implementation demonstrated the usefulness of randomization in solving a task for
which sensory information was poor.
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Title: Associate Professor of
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Detailed Abstract

Robots must act purposefully and successfully in an uncertain world. Sensory
information is inaccurate or noisy, actions may have a range of effects, and the robot’s
environment is only partially and imprecisely modelled. This thesis introduces active
randomization by a robot. both in selecting actions 1o execute and in focusing on
sensory information to interpret, as a basic tool for overcoming uncertainty.

An example of randomization is given by the strategy of shaking a bin containing
a part in order to orient the part in a desired stable state with some high probability.
Another example consists of first using reliable sensory information to bring two parts
close together. then relying on short random motions to actually mate the two parts.
once the part motions lie below the available sensing resolution. Further examples
include tapping parts that are tightly wedged. twirling gea.> before trying to mesh
them. and vibrating parts to facilitate a mating operation. Randomization is also
useful for mobile robot navigation and as a means of guiding the design process.

Over the past several vears a planning methodology [LMT] has evolved fer
svnthesizing strategies that are guaranteed tc solve robot tasks in the presence of
uncertainty. Traditionally such strategies make judicious usg of sensing and task
mechanics. in conjunct with the maintenance of past sensory information and the
prediction of future behavior. in order to overcome uncertainty. There are two
restrictions on the generality of this approach. First, not all tasks admit to guaranteed
solutions. Uncertainty simply mayv be too great to guarantee task success in a
specific number of steps. Second. a strategy 1s only as good as is the validity of
its assumptions. In an uncertain world all assumptions are subject *o uncertainty.
For instance. there may be unmodelled parameters that govern the behavior of a
svstem. This fundamental uncertainty limits the guarantees that one can expect
from any strategy.

The randomization approach proposed in this thesis attempts to bridge these
difficulties. First, the underlying philosophy of a randomized strategy assumes that
ceveral attemipte inay need to be made at soivily, a tasa. A task is only assuiticd to
be solvable with some probability on any given attempt. This view of a solution to a
task broadens the class of solvable tasks. Second, by actively randomizing its actions
a system can blur the significance of unmodelled or uncertain parameters. Effectiveiy
the system is perturbing its task solutions slightly through randomization. The intent
is to obtain probabilistically a solution that is applicable for particular instantiations
of these unknown parameters.

An understanding of the way that randomization can facilitate task solutions
is integral to the development of a theory of maripulation. Such a theory should
try to explain the relationship between solvable tasks and repertoires of actions,
with the aim of creating antonomous systems capable of existing in an uncertain
world. Randomization is seen as a primitive strategy that arises naturally in the
sol ition of mnanipuiacion tasks. Randoinization is as essential to the solution of
tasks as are sensing ar | mechanics. By formally introducing randomization into the




theor: of manipulation, the thesis provides one {urther step towards understanding
the relationship of tasks and strategies.

The thesis expands the existing framework for generating guaranteed strategies
to include randomization as an additional operator. A special class of randomized
strategies is considered in detail, namely the class of simple feedback loops. A simple
feedback loop repeatedly considers only current sensed values in deciding on actions to
execute in order to make progress towards task complction. Integrai to the definition
of a simple feedback loop in this thesis is the notion of a progress measure. Distance
to the goal can serve as a progress measure as can some nominal plans developed
under the assumption of no uncertainty. When progress is not possible the feedback
loop executes a randomizing motion. The thesis shows that if the average velocity
of the system relative to the progress measure points towards the goal, then the
svstem converges to the goal rapidly. In particular, the expected time to attain the
roal is bounded by the maximum progress label divided by the minimum expected
velocity. A simple feedback loop in the plane is analvzed. It is shown that the rapid
convergence regions of this randomized strategy are considerably better than those
for a corresponding gnaranteed strategy.

As part of the thesis, a simple feedback Joop was implemented on a robot. The task
consisted of inserting a peg into a hole using only position sensing and randomization.
The ymplementation demonstrated the usefulness of randomization in solving a task
for which sensorv information was poor.

The development of randomized strategies is undertaken in the discrete and
continuous domains. Most of the technical results are proved in the discrete domain.
with extensions to the continuous domain indicated.
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Chapter 1

Introduction

The goal of robotics is to understand physical interaction, and to use that
understanding towards endowing machines with the autonomous capability of
operating productively in the world. Towards realizing this goal, a large body of work
has been concerned with the problem of providing robots the ability to automatically
synthesize solutions to tasks specified in high-level terms. Of central importance in
synthesizing these solutions is the repertoire of primitive actions that are available to
a robot. It is evident that the form or even existence of a solution depends on the
actions available. In turn, the actions that one is likely to consider depend strongly
on one's view of the world. In recent vears, the key obstacle to successfully planning
and executing task solutions has been uncertainty. Uncertainty arises in a variety
of forms. Often uncertainty arises from run-time errors in sensing or control. Other
causes of uncertainty may be one’s lack of knowledge in modelling a svstem or an
environment. The realization that uncertainty plays a fundamental role in physical
interaction has changed the character of primitive actions deemed necessary to solve
particular robot tasks. For instance, in a perfect world it may be enough to specify
actions of the form MOVE FROM A TO B, assuming that the path from A to B is free.
In a world with uncertainty it may be impossible to guarantee the success of such
an action. The work on uncertainty over the past two decades may be interpreted
as searching for various primitive actions and methods of action combination that
extend the class of tasks solvable in the presence of uncertainty.

The archetypical primitive action is often simply a motion in a particular
direction. Sensors determine when an action should be initiated and when it should
be terminated. Actions are combined by a planning or execution system whose
responsibility it is to ensure that a task is completed. The outcome of a given
action may be non-deterministic, as uncertainty may yield a possible range of results
rather than a unique result at the termination of an action. Actions may have non-
deterministic outcomes, but generally the action to be performed at a given stage in
the solution of the task is deterministically fixed as a function of sensor values.

Other types of primitive actions are imaginable. For instance, instead of choosing
actions deterministically as a function of sensory inputs, a system could select a
motion randomly from . set of possible motions. Equivalently, a system might
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16 CHAPTER 1. INTRODUCTION

Figure 1.1: A three-dimensional peg-in-hole task.

randomly hallucinate sensor values when actual sensor values are not sutficiently
precise to guide the progress of a task solution. More simply, a given action may
attain a particular goal only with some non-zero probability of success but not with
certainty. Nonetheless, if the action is repeatable then it makes sense to retain the
action in one’s repertoire. This is because one can under suitable conditions ensure
eventual success by placing a loop around the action. These suitable conditions
postulate the absence of trap states and lower bounds on the probability of success.

We will refer to actions in which random choices are made or in which the outcome
is probabilistically determined as randomized or probabilistic actions, respectively.
The purpose of this thesis is to investigate the use of randomization in the solution
of robot tasks. Randomized and probabilistic actions are viewed as additional types
of primitive actions whose existence is essential to the solution of many tasks.

The advantages to be gained from randomization are three-fold.  First,
randomization increases the class of solvable tasks beyond those solvable by bounded-
step guaranteed strategies. This is because a randomized strategy need not solve
a task in a specific number of steps, but must merely ensure convergence in an
expected sense. Second, by tolerating local failures and circumventing these with
randomization, a strategy becomes less sensitive to task details. This reduces
brittleness, and, third, it simplifies the planning process.

1.1 A Peg-In-Hole Problem

Consider the task of placing a rectangular peg into a rectangular hole. See figure
1.1. One of the experiments conducted for this thesis inserted such a peg using a
strategy that combined sensing and randomization. The task system consisted of a
PUMA robot that manipulated the peg, and a camera system that provided position
sensing.

A i
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Figure 1.2: Rough sketch of the run-time character of a strategy that uses a
combination of sensing and randomization to attain the goal.
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Combining Sensing and Randomization

The nature of the strategy is roughly sketched in figure 1.2. The basic principle of the
strategy is to make use of sensory information when possible, and otherwise to execute
a randomizing motion. The purpose of the randomizing motion is to either attain the
goal or move to a location from which the sensor again provides useful information.
The sensing errors are represented in the figure with an error ball. For configurations
of the system far away from the goal the resulting sensing information may adequately
suggest an approach direction that is guaranteed to reduce the system’s distance from
the goal. In the figure this is indicated by a pair of long straight-line motions, one
of which actually attains the goal. However, when the system is near the goal, the
sensors may not be able to distinguish on which side of the goal the system is. In
this case, the svstem will execute a randomizing motion. A possible execution trace
of such motions is shown in the figure.

A Three-Degree-of-Freedom Strategy

Leo us eaainin€ iliis strategy in more detail for the peg-in-hole problem.

The problem was restricted to a three-dimensional task, instead of the full
six-dimensional problem inherent to an object with three translational and three
rotational degrees of freedom. It was assumed that the peg was properly aligned
vertically. This was achieved by picking up the peg from a horizontal table. However,
the peg was permitted to be misaligned about the vertical axis. The translational
degree of freedom corresponding to the peg’s height above the hole was removed by
making contact between the peg and the horizontal plate surrounding the hole. Thus
the peg's remaining three degrees of freedom consisted of two translational degrees
of freedom in the plane perpendicular to the vertical axis, and a rotational degree
of freedom about this axis. The axis of the hole was assumed to be paralle] to the
vertical axis.

The system operated as follows. The camera was mounted above the assembly,
looking straight down. The system would take a picture, extract edges, then try to
match these to the edges of the hole and the edges of the peg. Figure 1.3 depicts an
1dealized picture. The hole was backlit from below by & light, so that the edges visible
to the camera were primarily those bounding the open part of the hole. Having fixed
on a match of image edges to the peg and the hole, the system would generate a
planar motion consisting of a translation and a rotation that would roughly align the
peg above the hole. Figures 1.4 through 1.6 portray some actual data obtained by
the camera, along with the motion suggested by the system. The system would then
try to execute this motion, and take another picture. If the picture indicated that
the peg was probably above the hole and properly aligned, the system would try to
insert the peg. The test for proper alignment was visibility of a pair of perpendicular
edges on both the peg and the hole that were in close proximity and parallel. If the
peg was not yet ready to be inserted into the hole, then the system would generate
a new motion, and proceed to try again. If ever the system did not obtain useful
image edges for suggesting a motion, then it would execute a randomizing mr stion.



1.1. A PEC N-HOLE PROBLEM 19

Camera Scene
Hole

Extracted Edges

Suggested Mection

Figure 1.3: Top view of a peg-in-hole assembly. The camera extracts edges from the
scene. The edges are used to suggest a motion that will align the peg over the hole.
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Figure 1.4: This and the next two figures show some actual image data obtained for
the peg-in-hole strategy outlined in figure 1.3. The lines in this figure were obtained
from an image taken by a camera looking down on the peg-in-hole assembly. The
region bounded by the edges is the portion of the hole visible to the camera. The
hole was illuminated from below. The lines were thus obtained by first thresholding
the actual image, then looking for zero-crossings.
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Figure 1.5: This figure shows the system’s attempt to match the short image edges
of figure 1.4 to the physical edges of the peg and the hole. The four vertices indicate
the svstem'’s interpietation of the endpoints of the physical edges.
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Figure 1.6: The outer two solid lines are the system’s interpretation of the location
of the hole boundary. The inner two solid lines are the system'’s interpretation of the
boundary of the peg. The two dashed lines indicate the system's suggested motion.

Specifically, if the peg moved precisely as suggested by the system, it would move to
the location indicated by these lines.
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The motion was selected in a random fashion from a collection of two-dimensional
translations and rotations. In pseudo-code, the strategy was of the following form.

REPEAT until the peg is in the hole:

1. Take a picture of the assembly from above.
2. Extract zero-crossing edges from the image.

3. Try to match the image edges to the peg and the hole.

4. IF the edges can be matched reliably.
THEN use these to move the peg towards the hole,

ELSE execute a random motion.

End_repeat

Pseudo-code describing a randomized strategy for inserting a peg into a hole.

The r-y dimensions of the hole were 31.75mm x 19mm. while those of the peg
were 31mm x 18mm. The material was aluminum. The random motions within the
feedback loop had maximum magnitude of about 2.5mm. The insertion was started
from various randomly chosen configurations within a radius of about 10mm of the
center of the hole. This distance 1s well within the accuracy achievable using an open-
loop motion of the PUMA. Indeed. the robot arm would pick up the peg several feet
away from the assemnbly, then move it to within camera range of the assembly using
a preprogrammed motion. Once within camera range, the feedback strategy outlined
above would take control of the assembly.

Errors in Sensing and Control

The interesting aspect of the non-randomizing portion of this strategy is that it does
not always succeed. There are two reason for this. First, the suggested motion
need not be accurate. and second, the camera may not return any useful sensing
information, in which case there is not even a suggested motion. The interesting
failure is the second one, and it is here that randomization plays a useful role. We
will return to this topic shortly.

The first type of failure arises both because of calibration errors and sensing
uncertainty. Consider what it takes to transform an image motion into a robot
motion. There must be some correspondence between the coordinate system of the
image plane and the joint coordinates of the robot. Changing the position of the
camera or refocusing can easily change this correspondence. We thus performed a
rough calibration of the camera with the robot before each assembly, by executing a
set of test motions, consisting of two perpendicular translations, and a rotation about
a joint axis, to determine the mapping between the group of image motions and the
associated joint commands. The calibration was therefore very approximate. Indeed,
part of the motivation was to determine how easily one could place the peg into the
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hole without requiring fine precision either in sensing or control. It is thus highly
likely that the calibration contained a fixed but unknown bias. In other words, even
if subsequent sensing was perfect, the initial calibration error probably introduced
an unknown error into the suggested motions. Thus it would be highly unreasonable
to expect the robot to insert the peg into the hole in a single motion. Additionally.
there are sensing errors on each iteration. For instance, the light below the hole
causes blooming. This means that the image edges bulge out in a curved fashion,
thereby introducing error into the observed positions of the peg and the hole. In
short. the non-randomizing portion of the strategy is not guaranteed to succeed in a
specific predictable number of steps. Instead, the full randomized strategy operates
as a simple feedback loop that eventually succeeds. This will be explained further
below.

A more serious problem arises when the peg is near the hole. In this case the
camera may not see any edges on either the peg or the hole. or may only see small
fragments that it cannot reliably match to the peg or the hole. In part this is due to
the placement of the camera. Inherently, the camera will be offset slightly to one side
or the other of the assembly, and thus will not always be able to see the hole. For
instance, viewing camera. peg, and hole in terms of their projections into the plane
of assembly, if the peg is situaied between the camera and the hole. thien the camera
may not be able to see any edges. Conversely, if the peg is approaching the hole from
the far side of the hole relative to the camera, then the camera will likely be able
to detect the defining edges of the hole and the peg throughout the approach. Thus
there are preferred approach directions. Of course, the system is not aware of these.
just as it 1s not aware of the actual biases in the calibration and sensing information.

Randomization

Now consider the state of the assembly once the peg is near the hole, supposing that
the camera cannot determine any edges with which to suggest a next motion. In
order to have some chance of attaining the goal, the system must make a motion.
By selecting the motion randomly the system can avoid any deterministic traps
that might result. For instance, if the system were to choose a motion direction
deterministically, then it might have the bad fortune of moving to a location from
which the sensors would direct it right back to the location at which the sensors
provide no information. Thus the system would be stuck in a loop. By choosing the
motion direction randomly, the system can break out of such a loop. So long as there
is some charnce of attaining the goal, with probabilities that are uniformly bounded
away from zero. the strategy will converge eventually. Indeed, for this particular
implementation we chose the maximum step size of the random motions to be on
the order of 2.5mm. Thus whenever the system was within a few millimeters of the
goal, it had some chance of attaining the goal upon execution of a random motion.
The camera could always bring the peg to within a few millimeters of the hole. More
importantly, however, the random motions permitted the system to enter a region
frory which the biases in the sensor-robot calibration and in the placement of the
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camera actually acted in favor of goal attainment. In short, the randomizing aspect
could actually ferret out approach directions from which the biases were helping rather
than hindering the assembly. This is an important property of randomized strategies.

Convergence Regions

For this particular example the start configurations could be roughly grouped into
four regions as indicated in figure 1.7. For one of these regions, the assembly time of
the strategy was very fast, namely three motions on average. This region corresponds
to the quadrant that was diagonally opposite of the camera. For the other regions
the convergence times varied, although fourteen motions seems to have been a rough
average (taken over fifty trials). We often observed the system finding its way into
the fast region with the aid of randomizing motions, then quickly attaining the goal.

Analysis of the Strategy

Let us analvze this strategy in a very rough and approximate fashion. Suppose. for
the sake of argument. that whenever the system starts in the lower right quadrant
of figure 1.7, it can insert the peg in three motions on average. Experimentally, two
mow..as were required to actually insert the peg, and one motion to recognize that
the peg had been inserted. Suppose further, that if the system starts in any of the
remaining three quadrants. it invariably fails to insert the peg, but instead, within
two motions, places the peg above the hole in such a manner that the camera cannot
extract any useful edges. Whenever this happens, the system executes a random
motion. and tries agair. For simplicity let us assume that the random motion moves
the peg into any of the four quadrants with equal probability. Thus the probability of
moving into the quadrant from which fast goal attainment is possible is 1/4. In other
words. the expected number of randomizing motions required before the system starts
from the lower right quadrant is four. Since two motions are executed before each
randomizing motion, the expected number of sensor-based and randomizing motions
executed until the goal is attained is approximately (2 + 1) = 4 + 3, that is, 15.

Although this explanation is simplistic, it nonetheless provides an explanation of
the observed data, as well as a description of randomized strategies in general. The
important observation is that a randomized strategy is not a guaranteed strat-gy in
the traditional sense. By a guaranteed strategy we mean a set of possibly conditional
actions that are certain to accomplish a specified task in a bounded predetermined
number of steps. In particular, one cannot say that a randomized strategy will
succeed in a fixed predetermined number of steps. Rather, the strategy runs through
a sequence of operations that merely provides some probability of success. If this
sequence is repeatable and if the success probabilities sum to unity over an infinite
number of trials, then one may speak of eventual convergence of the randomized
strategy. Indeed, one may even be able to compute the expected number of steps
until convergence. However, one cannot generally say with certainty that the strategy
will succeed on any particular iteration.
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Figure 1.7: Four start regions around the hole. From one of these, the biases in the
system permit fast peg insertion. From the others, the robot either attains the goal or
finds its way via randomizing motions into the region from which fast goal attainment
is possible.
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A More General Problem

The previous analysis provides a rough explanation for the observed behavior of
the feedback loop. We would like tools for analyzing and synthesizing such strategies
more precisely. Most of the rest of the thesis is concerned with the development of such
tools. Chapter 5 provides a detailed analysis of a simple feedback loop for attaining a
circular region in the plane. This problem is an abstraction of the translational version
of the peg-in-hole problem just analyzed. See figure 1.8. Recall that once the peg has
made contact with the surface surrounding the hole, then the only motions required
to move the peg towards the hole are translations and rotations in the plane. This
is because we are assuming that the peg is aligned properly vertically. If the peg is
actually cylindrical, then only translations are required. The peg was not cylindrical
in our implementation. Nonetheless, the two-dimensional feedback strategy analyzed
in chapter 5 provides a reasonable abstraction of the peg-in-hole problem. Higher
dimensional analyses of the discussion of chapter 5 apply more generally.

We assume also that the system can recognize when the peg is directly above or
in the hole. In our implementation this was usually possible because the peg would
slightly drop into the hole creating a very narrow slit of light that was generally
observed only when the peg was in the hole. !

Gaussian Errors

The simple feedback strategy will be analyzed in chapter 5 assuming Gaussian errors
in sensing and control. Recall, however, that the strategy itself is formulated for more
general types of errors. Similar to the implementation of the peg-in-hole example
above, the feedback strategy of chapter 5 operates as a combination of sensing and
randomization. Whenever the sensors provide information useful for moving towards
the goal, then the strategy executes a motion guaranteed to move closer to the
goal. Otherwise, the strategy executes a random motion. As we will see later, the
randomization has a natural tendency to move away from the goal. In contrast, the
feedback loop uses sensory information in such a way as to make progress towards
the goal. However, progress is not always possible since the sensors do not always
provide useful information. An important issue therefore is to determine the range of
locations for which the strategy makes progress towards the goal on average. As we
will prove in chapters 3 and 5, whenever the natural motion of the system is towards
the goal on average, then the goal is attained quickly.

Figure 1.9 indicates the average behavior of the system for a particular set
of uncertainty parameters. In particular, the sensing error is an unbiased two-
dimensional Gaussian distribution with standard deviation 7/3. The qualitative shape
of this graph applies more generally to different uncertainty parameters. The graph
shows the expected velocity of the system as a function of the system’s distance from
the origin. Recall that the goal is a circle centered at the origin. A negative velocity

'During the course of some fifty trials there were only a couple of occasions when the system
incorrectly thought that it had placed the peg in the hcle.
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Figure 1.8: This figure shows the cylindrical version of the peg-in-hole problem of
figure 1.1. The peg is assumed to be aligned vertically. Once the peg has made
contact with the surface surrounding the hole, the task of moving the peg towards
the hole becomes a two-dimensional problem. The task may thus be represented as
the planar problem of moving a point into a circle. The point represents the position
of the peg in the space whose axes are given by the two translational degrees of
freedom of the peg.
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Figure 1.9: This figure shows the expected radial velocity of a simple
randomized feedback strategy for the problem of moving a point into a
circle, as in figure 1.8. That problem is an abstraction of the peg-in-hole
problem.

The expected velocity in the figure is positive in the range 0 < a < aq,
and negative in the range a > ag, where ag & 3. This means that for
starting positions that are closer to the origin than 3, the randomization
component of the strategy naturally pushes the system away from the
origin. For starting locations further away from the origin than 3,
the sensing information is good enough to pull the system towards the
origin on the average. This says that a goal whose radius is at least 3
would be attained very quickly.

In contrast, it turns out that a strategy which wishes to guarantee
progress towards the goal on each step can do so only if the goal radius
is at least 15.1. In short, the randomized strategy has considerably
better convergence properties than does the guaranteed strategy.

This graph and the number 15.1 will be derived in chapter 5. The
sensing error is assumed to be normally distributed with standard
deviation 7/3. Similarly, the velocity error is assumed to be normally
distributed with standard deviation 1/6 times the magnitude of the
commanded velocity.

29
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means that the system is making expected progress towards the origin. In particular,
we see that there is a region near the origin for which the natural tendency of the
system is to move away from the origin. Outside of this region the system moves
towards the origin on the average. The zero-velocity point is given by approximately
ao = 3 in the figure. Thus if the goal has radius bigger than ao, the system will
quickly converge to the goal. Even if the goal radius is smaller than ag, the system will
eventually converge, but now the convergence may require considerable time. Instead
of drifting towards the goal on average, the system attains the goal eventually due
to the diffusion character of the feedback loop. Figures 5.8 through 5.10 on pages
259-261 indicate the expected convergence times of the feedback strategy for different
starting locations and different goal radii.

An important observation to take from figure 1.9 is that the randomized feedback
loop has a wider convergence range than would a guaranteed strategy for attaining
the goal. In order to see this, let us simply state that for the example of figure 1.9
the feedback strategy requires a sensory observation that lies at least distance 8.1
from the origin in order to guarantee progress towards the goal. Whenever a sensory
observation lies closer to the goal, the feedback strategy executes a random motion. In
order to guarantee that the only sensor values observed will be at least distance 8.1
from the origin, it turns out that the system must be at least distance 15.1 from the
origin.? Thus. a planner wishing to guarantee, prior to execution time, that progress
towards the goal will be made consistently at execution time would only construct
plans for goals of radii larger than 15.1. On the other hand, the randomized feedback
strategy conv-rges to goals of arbitrary size. Furthermore, for the unbiased Gaussian
errors used to derive figure 1.9, the strategy converges quickly for goals of radii as
small as 3. This is because the expected approach velocity points towards the goal
whenever the system is at least distance 3 from the origin.

1.2 Further Examples

1.2.1 Threading a needle

There are numerous examples of manipulation tasks in which randomization arises
naturally. For instance, consider the task of threading a needle. Without perfect
control and perfect sensing, it is unlikely that one can thread a needle on a specific
try. Nonetheless, within a reasonable starting location near the eye of the needle,
there is a definite chance of success on each attempt to insert the thread, so that
success can be guaranteed by trying repeatedly. This is an example of a probabilistic
action around which a loop has been placed.

2These numbers are derived form a particular sensing model that will be explained in more detail
in the rest of the thesis. See in particular sections 2.2.3 and 5.2.



1.2. FURTHER EXAMPLES 31

Gear A

Gear B

Figure 1.10: Two gears.

1.2.2 Inserting a key

Similar examples are given by tasks such as inserting a key into a lock or closing a
desk drawer that is jamming. In the key-lock task the solution consists of moving the
key near the keyhole. then moving the key back and forth if necessary while reducing
the distance to the hole. until the key actually slides into the keyhole. Once the key
is in the lock, one may have to jiggle it back and forth while pushing in order to fully
insert the key. The example of closing a desk drawer is similar to this last step. If
the drawer jams, one may randomly jiggle it while pushing inward, to overcome any
jamming forces.

1.2.3 Meshing two gears

A wonderful example is given by the task of meshing two gears (see figure 1.10).
Donald ([Don87b] and [Don89)) first used this example to demonstrate a task in which
solutions cannot be guaranteed but for which there is some hope of success. His thesis
was that a robot should attempt to solve such tasks, so long as at the end of each
attempt the robot is able to distinguish between success and failure. For the gear-
meshing cave, should the success not be directly visible, Donald suggested a test that
consists of trying to rotate one gear. If the other gear rotates as well, with the proper
gearing ratio, then the meshing operation is known to have completed successfully.
Otherwise, it has failed. In the context of the randomized actions of this thesis, the
attempt to mesh the gears will play the role of a non-deterministic action, around
which we will place a loop whor = active randomization guarantees eventual success.
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In order to get a flavor of the approach, consider a simplified version of the gear-
meshing problem in which one can move the gears towards each other perfectly, so
that the centers of rotation travel on the straight line joining them (this might be
possible if the gears are mounted on a telescoping device constraining their centers of
rotation). As the gears are brought near each other, they will mesh if they are properly
aligned. In other words, for some set of starting orientations, the two gears will mesh
if brought together. The range of starting orientations that permit successful meshing
is some subset of the two-dimensional space [0,27] x [0, 2] that describes the possible
orientations of the two gears. Suppose that one cannot sense or control the orientation
of the gears well enough tc be able to ensure that the gears are properly oriented. If
initially the gears are randomly oriented, then the ratio of the area of the successful
starting range to 472 is the probability of success on any given try. A randomized
strategy for meshing the gears consists of first spinning the gears to achieve a random
orientation, then bringing them together in an attempt to mesh them, followed by a
test to determine whether they have indeed meshed properly. This action is repeated
until the test indicates that the gears have been meshed. The expected number of
attempts until success is simply one over the probability of success on a given try.

This example raises a number of important issues. First, let us consider the
probability of success on a given iteration. In order to specify the strategy of looping
around a primitive action one really does not need to know what this probability of
success is. It is sufficient to know that on each try there is some chance of success
and that the sum of the probabilities of success over an infinite number of trials is
one. For instance, it is sufficient to know that the probability of success on each trial
is larger than some non-zero constant.

While the specification of the strategy does not depend on the probability of
success, it is nonetheless sometimes desirable to compute this probability, either to
ascertain that it is non-zero or to compare it with other possible strategies. This
entails computing the area of the range of initial orientations that permit successful
gear meshing. Figure 1.11 portrays this range in a highly approximate fashion.
Essentially the range of successful initial orientations consists of a set of diagonal
stripes in the space of orientations of the two gears. The number of stripes depends
on the number of gear teeth, and the inclination of the stripes depends on the gearing-
ratio. The center axes of the stripes correspond to orientations of the two gears at
which the gears are perfectly meshed. The stripes themselves include orientations at,
which the gears are not perfectly meshed, but from which the gears will compliantly
rotate to perfect meshing if they are pushed together. Computing the exact shape
of these stripes is in general a difficult task, which depends on the exact geometry of
the parts and on the coefficient of friction between them. The basic idea is to start
from a goal consisting of those orientations at which the gears are perfectly meshed,
then backchain, recursively determining all those points that can move compliantly
toward the goal under a given applied force. The problem is complicated by the
rotational compliance of the gears. This backchaining process is known as computing
preimages or backprojections (see [LMT], [Mas84] and [Erd84}). We w.ll refer to
this approach as the LMT preimage planning approach. Donald (see [Don87b] and
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Orientation
of Gear B

Orientation of Gear A

Figure 1.11: Schematic representation of the range of initial orientations that permit
successful gear-meshing. These are indicated by the hatched areas. [The figure
corresponds to gears with only four teeth. Realistic gears generate more stripes.]

[Don89]) has investigated approximate techniques for computing such backprojections
in the gearing case. We will not examine those techniques here. Instead, we will
convey the basic 1dea of how one might compute success probabilities with a slighti,
simpler example.

If we fix the orientation of one of the gears, the successful starting orientations of
the other gear form a periodic pattern of disconnected intervals. This pattern looks
very much like a sieve, and indeed we can think of the gear as a sieve that filters out
bad orientations of the other gear or, more generally, improperly shaped gears. Let us
look then at a sieve to demonstrate in a simpler setting the ideas behind randomized
strategies.

Figure 1.12 shows a simple grating that acts like a one-dimensional sieve,
permitting some two-dimensional objects through but not others. Let us suppose
that the object we would like to get through the sieve is a square, as shown in figure
1.13. Assume the object can only translate, not rotate. Relative to the indicated
reference point on the object, the translational constraints imposed by the sieve on
the object are as shown in figure 1.14. This is the configuration space (see [Loz81]
and [Loz83]) representation of the sieve. Moving the object through the real sieve
corresponds directly to moving a point through this configuration space sieve. The
representation depends of course on the object being moved. Indexd for objects that
are too larg=, the configuration space sieve is simply a soli horizontal slab, indicating
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Motion of objects
through sieve

Figure 1.12: A grating of two-dimensional obstacles. The grating acts as a
one-dimensional sieve. only allowing objects small enough to move through the sieve.

that the object cannot be moved through the sieve.

Given the configuration space sieve, we are now in a position similar to the gear-
meshing example. In particular, let us suppose that the analogue to moving the gears
together consists of translating the object vertically downward (for instance, under
the influence of gravity). Then, for certain starting configurations. the object will
translate through the sieve, while for other configurations it wiil become stuck on the
sieve elements. Thus the sieve also acts as a configuration sieve, filtering out certain
initial starting configurations of the object. Of course, that is not exactly the purpose
of the sieve. After all, one would like the object to translate through the sieve. In
order to ensure this, one shakes the sieve, or equivalently, one randomizes the initial
position of the part. This operation corresponds to the act of twirling the gears in
order to randomize their configurations on each meshing attempt.

Let us compute the probability of success for the sieve example. First, let us
assume that there is no control unceriainty, so that the object translates straight
down when commanded to do so. Figure 1.15 portrays those start configurations from
which the object is guaranteed to pass through the sieve when translating downward
(recall that the part is represented by a point in its configuration space). Suppose that
the sieve is periodic and unbounded, and suppose further that the start configuration
of the object is uniformly distributed. One then sees that the probability of success
is simply the ratio of the length of a hole in an elemental period of the sieve to the
full length of the elemental period.

In the previous computation, it was enough to look at one-dimensional quantities

——— =
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‘ Solid Sieve Element

Object to move through sieve

L
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N reference point

Sieve Element in
/ \ configuration space

Figure 1.13: This figure shows the constraints imposed on the motion of the square
by the trapezoidal sieve element. The bottom polygon describes the locations of the
reference point of the square for which there would be contact between the square
and the trapezoid.

(YYD Y

Figure 1.14: This figure shows the configuration space sieve corresponding to the real
space sieve of figure 1.12 for the motion of a square as in figure 1.13.
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Probability of success is appraximately a/b

Figure 1.15: Perfect velocity preimage. For starting locations in the shaded area,
the system is guaranteed to pass though the sieve by moving straight down. For
other locations, the system will get stuck on a horizontal edge. If the starting
location is uniformly distributed, then the probability of passing through the sieve is
approximately a/b.
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Commanded Velocity

and error cone

Probability of success is at least A/B

Figure 1.16: Preimage assuming velocity error. For starting locations in the shaded
area, the system is guaranteed to pass though the sieve, given the velocity error cone.
For other locations, the system may get stuck on a horizontal edge. If the starting
location is uniformly distributed in the infinite horizontal strip, then the probability
of passing through the sieve is at least A/B.
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in computing the probability of success, since the vertical coordinate of a point above
the sieve did not matter in determining whether the point would translate through
the sieve. However in general one needs to compute the ratio of the area of successful
starting configurations to the area of possible starting configurations. Suppose, for
instance, that whenever a translation is commanded the actual motion lies within
some veiocity error cone about the nominal commanded velocity. Then the set of
initial configurations from which translation through the sieve is guaranteed changes.
Indeed, the successful starting configurations are delineated by triangles that are
determined by erecting the velocity error cone above the sieve holes, as shown in
figure 1.16. Suppose that the initial configuration of the object is known to lie in
some region, uniformly distributed. Consider those portions of the triangles that
lie within this starting region, and sum up the areas of these portions. Then the
probability of success is given by the ratio of this area to the full area of the starting
region. This computation is also indicated in the figure for a periodic sieve with a
periodic starting region.

Actually, the probability thus computed is an underestimate. This is because
the probability is determined only by considering configurations from which passage
through the sieve is guaranteed. independent of the actual motion taken within the
velocity error cone. Such regions are known as strong preimages (see [LMT]). It is.
however. also possible that some points that lie outside of these strong preimages
may for some possible error velocity pass through the sieve. However, since this
passage cannot be guaranteed. without further information, one cannot say anything
about how the possibility of success for these start configurations affects the total
probability of success. If the probability distribution of the velocity errors is known.
then it can be used to compute an additional terin that figures into the probability of
success. Without such knowledge, however, we can imagine that no point outside of
the strong preimages ever passes through the sieve, and thus our original probability
computation is the best possible lower bound.

Another issue raised by these examples concerns the need for randomization. We
will discuss this issue further in tie next section. but let us briefly consider the
question of randomization in the context of the gear and sieve examples. One might
wonder why it is ever necessary to randomize the start configuration of a part, as
opposed to deterministically searching the set of possible start locations. For instance,
in the gear example, even if the orientations of the gears are not measurable well
enough to ensure proper initial alignment, one could imagine rotating one or both of
the gears slightly after each meshing attempt, then retrying. If the rotation is small
enough, then this process should eventually encounter a starting orientation from
which successful meshing is possible. Unfortunately, there are some problems with this
approach. First. it may be impossible to rotate the gears finely enough to guarantee
that the rotation will not just jump over the successful start orientation. And second,
after a failed meshing attempt the configuration of the gears will have changed. so that
it is not at all clear that incremental rotations will eventually encounter a successful
starting configuration. In principle, the system could get into a loop, starting from
a given unsuccessful orientation, rotating during the failed attempt to an orientation
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exactly offset from the start orientation by the angle of increment, thus ensuring that
the new start orientation after incrementing is again the old start orientation, and
so forth. Of course, if one’s predictive capabilities are good enough, one could detect
the potential for such a loop, but that is not always the case. A straightforward
method of avoiding the possibility of a deterministic loop is to randomize the initial
conditions. We will discuss this approach in more detail in the next section.

There is another reason for randomizing, which again relates to the accuracy with
which one can model the world. In the sieve example, for instance, the spacing
between sieve elements may be slightly non-uniform, so that one cannot predict
exactly where a hole will be. Taken over a large segment of the sieve, the density of
holes to non-holes may be the same as in the uniform case, but it may vary locally.
Thus it may make sense to randomize the start location to take advantage of the high
overall probability of success. avoiding possibly low local probabilities of success. Let
us make this argument more precise. Suppose that in a perfectly shaped sieve, the
period of the sieve has length b, of which length a is free space, and length b — a is
an obstacle. Thus the probability of success (assuming perfect control) is a/b. See
again figure 1.15. Now suppose that the sieve is not built very well. Instead there
are two types of sieve sections. In Type One sections the hole has size a + ¢, while in
Type Two sections the hole has size a — €, where € is some positive number satisfying
0 < ¢ < min{a,b—a}. Suppose that the underlying period of the sieve still has size b,
and that the two types of sieve sections occur with equal frequency when viewed over
the entire sieve, although locally one or other type may dominate. If the state of the
system happens to be in a region in which there are only Type One sieve sections,
then the probability of success is (a + €)/b, whereas if the system happens to be in
a region in which there are only Type Two sections, then the probability of success
is (@ — €)/b. If € is close to a, then the probability of success might be very near
zero if the system is in this second region. However, if the system first randomizes its
initial position, so that it starts off with a uniformly chosen initial position, then the
resulting probability of success is given again by a/b.

We will discuss a related example in section 2.4. Another related example is given
by a person trying to open a door in the dark. Suppose he has n keys of which &
will open the door. If he tries the keys in order, in the worst case he may need to
try n — k + 1 keys before success, but if he tries them randomly (with replacement),
then, although the worst case is now unbounded, the expected number is nfk. If n
and k are large and k is comparable to n, but still considerably less than n, then
it makes sense tc try the randomized approach. This is essentially the motivation
behind the use of probabilistic algorithms in computer science. If k is small, then the
deterministic approach is preferable. However, even in this case, if the deterministic
approach is subject to failure, in that the person may drop the keys or forget which
keys he has already tried, then the ra. domized approach is again useful.

To summaerize, randomization is useful in two ways. First, randomization foils
an adversarial world that might cause a deterministic search to loop. Second,
randomization may compensate for imperfect world knowledge, by ensuring that
successful actions are taken at least occasionally, and in some cases by ensuring that
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successful actions are taken with high enough frequency.

1.3 Why Randomization?

The main purpose of randomization is to increase the class of solvable tasks. In
particular, randomized strategies are useful for solving tasks for which there is no
guaranteed solution but for which there is some probability of success. A guaranteed
solution in this context refers to a strategy consisting of a set of possibly conditional
actions that are certain to accomplish a task in a bounded predetermined amount of
time. In contrast, a randomized strategy is expected only to attain the goal in some
expected amount of time. While giving up predetermined convergence, randomized
strategies provide a tool for solving a broader class of tasks.

Randomization also increases the class of solvable tasks by reducing the demands
made on modelling and prediction. For instance, in the peg-in-hole task at the
beginning of this chapter, we were not required to model very accurately the errors
introduced by the calibration process. More generally, one can imagine tasks in
which geometrical errors in the modelling of parts prevent guaranteed solutions. For
instance, there might exist slight nicks and bumps on the hole surface, which could
prevent successful entry of the peg into the hole. In general, it is very difficult to plan
explicitly for such irregularities. However, for a large class of such irregularities the
system can avoid becoming permanently stuck by wiggling the peg slightly, that is,
by introducing randomized motions.

Reducing the demands on modelling and prediction also permits simpler solutions
to tasks for which there might actually exist guaranteed strategies. In addition,
reducing the knowledge requirements of a strategy reduces its brittleness.

One question remains. It deals with the difference between active randomization
and probabilistic or non-deterministic actions. In the context of this thesis, to say that
a strategy or an action is probabilistic is to say that it has some non-zero probability
of success, but may not be guaranteed to succeed. More formally, an action is
probabilistic if its effect on each state is modelled as a set of configurations, each
of which has some non-zero probability of occurring. Often a probabilistic strategy
will consist of some loop around a probabilistic action, the purpose of the loop being
to guarantee eventual convergence.

More generally, a strategy or action is said to be non-deterministic if its outcome is
modelled as a set of possible configurations. The non-deterministic model is intended
as a worst-case model. It says simply that an action might cause a transition to any
one of a set of possible configurations. However, nothing is said about the actual
likelihood of that transition occurring.

While an action may be probabilistic, the decision to execute that action is often
deterministic. In other words, given certain sensor values, the system selects a certain
action in a completely deterministic fashion. It is simply the outcome of the action
that is probabilistic or non-deterministic. An alternate approach is for a system to
actively make random choices in selecting actions. This process is what we have been
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calling randomization.

We have already indicated in the sieving example the usefulness of randomization.
However, it may nct be clear why randomization is ever really required. After all, one
could imagine that a system could simulate in a deterministic fashion a randomizing
system, simply by enumerating in some order all possible random decisions of the
randomizing system, until the goal is attained.

One possible benefit of active randomization might be improved convergence
times. There are certainly arguments from the theory of randomized algorithms
that suggest that randomization can speed up convergence of certain tasks. Indeed,
we will exhibit an example in chapter 3 for which randomization does speed up
convergence. However, the problem here is slightly different, in essentially three ways.
First. unlike decision problems in algorithms, when moving in the physical world one
cannot arbitrarily restart the problem to improve convergence. For instance, for
decision problems in Bounded Probabilistic Polynomial time, one can repeatedly ask
the decision question, thereby making the probability of error as small as desired.
Furthermore, this may be done in a polynomial amount of time. In contrast, once a
robot has moved, it may have introduced uncertainty into its configuration, and thus
may not be able to restart from the same location should it fail to attain its goal. To
some extent one can define this issue away, by insisting that it be possible to place
a loop around any probabilistic sequence of actions. However, the basic difference
remains. Second, many robot planning problems in the presence of uncertainty
are at least PSPACE-hard (see [Nat88], [CR], and [Can88]). Thus the hope for
polynomial speedup by moving to probabilistic algorithms seems futile in general
(see [Gill]). Third, our main interest lies in extending the class of solvable tasks.
with performance issues entering as a secondary motivation. Thus the question of
whether randomization is ever required enters at the level of task solvability rather
than purely at the level of convergence time.

The need for randomization arises in the context of non-deterministic actions.
When actions are probabilistic, one can, at least in principle, compare different
decisions based on their probability of success, then select that decision which
maximizes the probability of success. No randomization is required. However, in
the setting of non-deterministic actions, one must be prepared to handle worst-case
scenarios. This means that one should view uncertainty as an adversary who is
trying to foil the system’s strategy for attaining the goal, and who will therefore
always choose that outcome of a non-deterministic action that prevents the system
from attaining its goal. Again, it may seem that one can enumerate all decisions and
actions, then select that sequence of actions that is guaranteed to attain the goal
despite the most devilish adversary. Indeed, this is the approach taken in planning
systems that generate guaranteed plans, that is, plans guaranteed to attain the goal in
a predetermined bounded number of steps. However, not all tasks admit to guaranteed
solutions. The interest of this thesis is in tasks for which there may not exist any
guaranteed plan, or for which finding a guaranteed plan may be very difficult. In
that setting randomization can play a useful role, in that it can prevent an adversary
from forev: - foiling the goal-attaining strategy. We should note that there it a tacit
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Figure 1.17: This is a state graph with non-deterministic actions. There is no
guaranteed strategy for attaining the goal if the state of the system is unknown.
However, by randomly and repeatedly executing one of the actions A, or A,, the goal
is attained in two steps on average.

assumption here that nature, that is, the adversary, cannot control or observe the
dice used to make the randomizing decisions. We now demonstrate the usefulness of
randomization with a very simple example.

Imagine a discrete three-state system, as shown in figure 1.17. There is one goal
state G, and two other states labelled as state s; and state s;. Additionally, there
are two actions. A, and A,, that have non-deterministic outcomes. If the system is
in state s; then action A; is guaranteed to move the system to the goal. However,
action A, will non-deterministically move the system from s, either back to s, or to
the other state s;. Similarly, if the system is in state s, then action A; is guaranteed
to attain the goal, while action A, will non-deterministically either remain in s, or
move to state s;. Suppose that the only sensing available is goal recognition. In other
words, the system can detect goal attainment, but ca:inot decide whether it is in state
sy or s;. We observe that there is no guaranteed strategy for attaining the goal. For
any deterministic sequence of actions there is some interpretation of the diagram for
which the sequence fails to achieve the goal. Said differently, from a worst-case point
of view, no finite or infinite deterministic strategy is guaranteed to attain the goal.

As an example, consider the sequence of actions A;; A;; Az; Ay; Ag; A, The
following is a possible sequence of transitions that fails to attain the goal.

Ay A A, A A A,

Sy —— 89 —— §; —— 83 — 8 — §; —— < whatever > .

In order to prove that there is no guaranteed strategy for attaining the goal.
imagine an adversary who can look ahead to the next action A;, and u: : the current
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action to either stay in the current state or move to the other non-goal state. In
particular, the adversary can always move to state s;, with j # 1, where the index :
is determined by the action A;. (Here both ¢ and j are either 1 or 2.)

The introduction of an adversary is just a proof artifice of course. There is no
need to actually have someone look at a purported strategy for attaining the goal.
The point is that even without an adversary, the transition diagram might behave as
if there were such an adversary, for any fixed deterministic strategy. For instance,
the transition diagram might be the visible portion of a considerably more complex
machine or natural process, whose transitions govern the apparently non-deterministic
transitions of A, and A,.

One question one might ask is how complex such a hidden state diagram must be
to foil a particular deterministic strategy. In particular, if one limits the complexity
of the hidden diagram. then sufficiently long deterministic strategies will eventually
attain the goal. We will not delve into this question.

Another question concerns the importance of the term “fixed”. If one varies
the strategy then one increases the likelihood of obtaining a guaranteed strategy.
Of course, varyving a deterministic strategy in a deterministic manner yields another
deterministic strategy. Instead. suppose that one varies the strategy by randomizing,.
Then we see that there exists a randomized strategy whose expected convergence
time is very low, namely two steps. This strategy randomly chooses between actions
A, and A; on each step, choosing each action with probability 1/2. Since the system
is in some state s;, the strategy will choose the correct action A; for that state with
probability 1/2. This is true independent of the behavior of the system. Thus, by a
waiting time argument, the expected time until the system guesses the correct action
is two. In turn this says that the expected time until the goal is attained is no
greater than two. [It may actually be less than two, if the underlying transitions are
themselves probabilistic rather than adversarial.] This example shows clearly how
randomization can solve tasks for which there are no guaranteed strategies, and for
which no deterministic simulation of the randomization is guaranteed to solve the
task.

The argument of the example above is essentially a worst-case versus expected-
case analysis. It may seem strange to compare worst and expected cases. However,
there are two important observations to take from this example. First, there is a
major advantage to be gained by considering the expected case rather than the worst
case. This is because the task of attaining the goal is solvable only in the expected
case, not in the worst case. Second, the expected case convergence time is computed
over randomizing decisions actively made by the run-time system, not over externally
defined probability distributions. In particular, the system has control over this
expectation on any attempt to complete the task. It is not an expectation computed
over different possible world models of the actions A; and A,. Rather the upper
bound on the expectation applies for every possible interpretation of the underlying
non-deterministic model.

As a final comment, let us observe that often probabilistic actions may have the
same effect as active randomization sn the system’s part. For instance, if the non-
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deterministic transitions of 4; and A, were probabilistic, with transition probabilities
1/2, then the system could simply execute action A, repeatedly. No randomization
would be required, since the physics of the problem would effectively provide the
requi.ed randemization. ¥ the erstem c-iginally started from state s;, the strategy
would succeed in a single step, whereas if the system started from state s;, the strategy
would succeed in the expected time of three steps.

1.4 Previous Work

Work on planning in the presence of uncertainty goes back in time as far as one can
imagine. Credit for the modern approach probably goes to Richard Bellman [Bell],
who formulated the dvnamic programming approach that underlies much of optimal
control and decision theory. His ideas were themselves based to some extent on the
calculus of variations and game theory. See [Bert| for an introduction to dynamic
programming in the discrete domain, and see [Stengel] for an overview of techniques
in optimal control.

1.4.1 Uncertainty

Within the domain of robotics, uncertainty has always been a central problem.
Much of the work on compliant motion planning was motivated by a desire to
compensate for uncertainty in control and inaccuracies in the modelling of parts.
The aim was to take advantage of surface constraints to guide assembly operations.
Inoue [Inoue] used force feedback to perform peg-in-hole assembly operations at
tolerances below the inherent positional accuracy of his manipulator. Simunovic
(see [Sim75] and [Sim79]) considered both Kalman filtering techniques in position
sensing and the use of force information to guide assembly operations in the presence
of uncertainty. In conjunction with this work there grew an interest in friction and
the modelling of contact to describe the possible conditions under which an assembly
could be accomplished successfully. See [NWD], [Drake], [OHR], [OR] and [Whit82].
More recent work with an emphasis on understanding three-dimensional peg-in-hole
assemblies in the presence of friction and uncertainty includes [Caine] and [Sturges].

1.4.2 Compliance

The formalization and understanding of compliant motion techniques received several
major boosts. Whitney [Whit77] introduced the notion of a generalized damper as a
way of simplifying the apparent behavior of a system at the task level. The generalized
damper is a first-order description of a system. A zeroth-order description is given
by a generalized spring. In this direction, Salisbury’s [Sal] work on generalized
springs provided a means of stiffness control for six degrees of freedom. Several
researchers considered a form of control known as hybrid control (see the article
[Mas82b] for a pointer to these various researchers, and more generally the book
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[BHIJLM]). The work of Mason [Mas81] contributed to the understanding of compliant
motions by modelling and analyzing compliance in configuration space. In particular,
he introduced and formalized the ideas of hybrid control, showing how these could
be modelled natuidll; on surfaces in configuration space. The bacic approach is to
maintain contact with an irregular and possibly unknown surface, by establishing a
force of contact normal to the surface, while position-control'ing directions tangential
to the surface of contact. In short, uncertainty is overcome in some dimensions.
Raibert and Craig [RC] describe a combination of position and force control in their
implementation of a hybrid control system. See also [Inoue| and [PS] for earlier work
on hybrid control.

1.4.3 Configuration Space and Motion Planning

The notion of configuration space was introduced into robotics by Lozano-Pérez (see
[Loz81] and [Loz83)), as a means of characterizing a robot’s degrees of freedom
and the constraints imposed on those degrees of freedom by objects in the world.
A point in configuration space corresponds to a configuration of the robot in real
space. Thus configuration space is a means of transforming a complicated motion
planning problem into the problem of planning the motion of a point in a (possibly)
higher-dimensional space whose axes are the robot’s degrees of freedom. The roots
of these ideas may be found in [Udupa], who transformed the problem of moving
a robot among a set of obstacles into the problem of moving a point among a set
of transformed obstacles. See also [Loz76], who used configuration space in the
context of grasping parts. The motivation for configuration space was initially to
solve the obstacle avoidance problem. In particular, the configuration space of an
object provides a geometric description of the set of collision-free configurations of
the object. and thus the basis for planning algorithms. Much work has occurred in
obstacle avoidance since then; se below for a partial list.

An important observation made by Mason’s paper [Mas81] is that configuration
space possesses dynamic properties as well as purely kinematic properties. Thus the
normals to configuration space surfaces have dynamic significance. In particular,
one can push on a configuration space surface and experience a reaction force.
This observation meant that hybrid cont: | could be viewed nicely in configuration
space. Additionally, the dynamic information of configuration space was later used
by Erdmann [Erd84] to model friction in configuration space.

As we have indicated, much of the geometric work on motion planning provided
a foundation for the subsequent and parallel work on planning with uncertainty.
Investigation of the motion planning problem finds its roots in the works of Brooks
[Brooks83]; Lozano-Pérez and Wesley [LPW]; Reif [Reif]; Schwartz and Sharir [ScShII]
and [ScShIll}; and Udupa [Udupa]. For further foundational work in the area,
both for a single robot and for several moving robots, see Brooks and Lozano-Pé-
rez [BLP]; Lozano-Pérez [Loz86]; Canny [Can88]; Canny and Donald {CD}; Donald
([Don84} and [Don87a]); Erdmann and Lozano-Pefez [ELP]; Fortune, Wilfong, and
Yap [FWY]; Kant and Zucker [KZ]; Khatib [Khatib]; Kodits hek [Kodit}; Hopcroft,
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Joseph, and Whitesides [HJW]; Hopcroft, Schwartz, and Sharir [HSS]; Hopcroft and
Wilfong ([HW84] and [HW86]); O’D unlaing and Yap [ODY); O’D unlaing, Sharir
and Yap [ODSY]; Reif and Sharir [RS]; Spirakis and Yap /SpY]; and Yap ({Yap84]
and [Vap86]). This is by no means au exhaustive list. Much research has been done.
Some books with excellent survey articles include [SHS], [SY], and [KCL}.

We will not discuss this work in detail, but instead focus more on the development
of the work on uncertainty.

1.4.4 Planning for Errors

The generalized spring and generalized damper approaches provided a new set of
primitives with which one could reduce uncertainty in specific local settings. In
parallel with this work there arose a desire to synthesize entire planning systems
that could account for uncertainty. Early work considered parameterizing strategies
in terms of quantities that could vary with particular problem instantiations. The
skeleton strategies of Lozano-Pérez [Loz76] and Taylor [Tay] offered a means of
relating error estimates to strategy specifications in detail. In particular. Lozano-
-Pérez’s LAMA system used geometric simulation of plan steps to decide on possible
motion outcomes. The simulation made explicit the possible errors that could occur.
This information could be used to restrict certain parameters or to introduce extra
sensing operations. Taylor’s system used symbolic reasoning to restrict the values
of parameters in skeleton strategies in order to ensure successful motions. Brooks
[Brooks82] extended this approach using a symbolic algebra system. His system could
be used both to provide error estimates for given operations, as well as to constrain
task variables or add sensing operations in order to guarantee task success. Along
a slightly different line, Dufay and Latombe [DL] developed a system that observed
execution traces of proposed plans, then modified these using inductive learning to
account for uncertainty.

1.4.5 Planning Guaranteed Strategies using Preimages

In 1983, Lozano-Pérez, Mason, and Taylor [LMT] proposed a planning framework
for synthesizing fine-motion strategies. This approach is sometimes referred to as the
preimage framewcrk. This is because the framework generates plans by recursively
backchaining from the goal. Each backchaining step generates a collection of sets.
known as preimages, from which entry into the goal is guaranteed. This framework has
strong connections to the dynamic programming approach mentioned above, which
will be discussed further in the thesis. The preimage framework directly incorporated
the effect of uncertainty into the planning process. In particular, the framework
made clear how sensing operations as well as mechanical operations could be used to
reduce uncertainty. An example of a mechanical operation that reduces uncertainty
is a guarded move. During a guarded move a robot moves in the direction of an
object located at an unknown distance, until contact with the object is established.
Thus the uncertain location of the object becomes known with precision, relative
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to the location of the robot. Guarded moves are discussed in [WG]. Earlier work
using guarded moves includes {Ernst]. Mason [Mas84] showed that that the preimage
planning approach is correct and bounded-complete. This means that if any system
caa solve a motion pilanning probiem given the uncertainty and dynamics assumed
within the preimage framework, then in fact the preimage framework will also provide
a solution.

The preimage methodology spawned rumerous other directions of research.
Erdmann [Erd84] considered the issues of goal reachability and recognizability. He
showed that for some variations of the pluaoning problem, the task of computing
preimages can be separated into two simpler problems. One of these ensures that
the system will reach its goal, while the other ensures that the system will actually
recognize that it has attained the goal. In general these issues are not separable.
Buckley [Buc] implemented a system that computed multi-step strategies in three-
dimensional cartesian space. His planner employed a discrete state graph that
modelled the possible transitions and sensing operations in an AND/OR graph. Turk
[Turk] implemented a two-dimensional Lackchaining planner.

1.4.6 Sensorless Manipulation

We have already mentioned the importance of mechanical operations for reducing
uncertainty. A strong champion of such techniques is Mason. See, for instance,
[Mas82a|, [Mas85], and (Mas86]. In particular, Mason has looked at the problem of
reducing uncertainty in the orientation of parts by pushing. Building on this work,
Brost (see [Brost85] and [Brost86]) has implemented a system that can orient planar
parts through a series of pushing and squeezing operations. An important aspect
of these strategies is that they do not require sensing at the task level. Instead,
all the actions are open loop, relying purely on the mechanics of the problem to
reduce uncertainty. Other work involving the reduction of uncertainty without sensing
includes the work by Mani and Wilson [MW] on orienting parts by sequences of
pushing operations, the work by Peshkin [Pesh| on orienting parts by placing a series
of gates along a conveyer belt, and the graph algorithms of Natarajan [Nat86] for
designing parts feeders and planning tray-tilting operations. A tray-tilter is a system
that orients planar parts dropped into a tray by tilting the tray. Erdmann and Mason
[EM] investigated this problem, designing a planner based on the mechanics of part
interactions with the walls of the tray. The planner expected as input a polygonal
description of the part to be oriented along with the coefficient of friction. The output
of the planner consisted of a sequence of tilting operations that was guaranteed to
orient and position the part unambiguously, if such a sequence exis.ed. A robot
executed the motions suggested by the planner. This work represents a specialization
of the preimage framework to the sensorless case, in which only mechanical operations
may be used to reduce uncertainty. The idea for tray-tilting came from work by
Grossman and Blasgen [GB] who used a combination of tray-tilting and probing
operations to ascertain the orientation of a part as a prelude to grasping the part.
Taylor, Mason, and Goldberg [TMG] introduced sensing back into the tray-tilter, as
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a mean: of investigating the relative power of sensiug and mechanical operations
They developed a discrete planning system based on an AND/OR graph similar to
the graph used in Buckiey's planner.

More recent work includes the study of impact by Wang (see [Wang] and [WM]).
Studying impact is of central importance, since all operations in which objects make
contact involve impact. Generally, the impact occurs at scales well below those
available to current sensors.

1.4.7 Complexity Results

We should mention some hardness results regarding the motion planning problem
in the presence of uncertainty. Natarajan [Nat88] has shown the problem to be
PSPACE-hard in three dimensions for polyhedral objects. Canny and Reif [CR]
have shown the problem to be hard for non-deterministic exponential time, also in
thres dimensions. In general, the computability and complexity of the problem of
plannisg in the presence of uncertainty is not known. Erdmann [Erd84| showed that
the problem is uncouiputable in the plane if the environment can encode arbitrary
recursive functions. However, tor many special cases, computable algorithms are
known. Natarajan [Nat86] also has a number of results suggesting fast planning times
for restricted versions of the sensorless manipulation problem. Donald {Dorn89] lias
demonstrated various polynomial-time algorithms for computing single-step stra*-gies
in the plane, assuming restrictions on the type of sensing permitted. In particular, all
motions were terminated by detecting sticking in the environment. Donald also gave
a single-exponential-time algorithm based on the theory of real closed fields for the
multi-step strategy. Eriggs [Briggs] extended these results to improve the performance
of the single-step planner. Also, Canny [Can89] recently exhibited an algorithm based
on the theory of real closed fields that solves the general motion planning problem
under uncertainty for those cases in which the robot trajectories may be modelled as
algebraic curves.

1.4.8 Further Work on Preimages

Further work on the preimage methodology has been conducted by Latombe [Lat]
and his group. This work includes a study of the preimages and strategies that result
from the use of various termination predicates, in addition to those used in the LMT
preimage methodology. Others who have looked at fine motion assembly recently
include [Desai], [Koutsou], [LauTh], and [Valade]. We also refer to the book [KCL)]

for a review of other relevant literature.

1.4.9 Guaranteed Plans

The philosophy of the preimage methodology is to generate plans that are guaranteed
to accomplish some task despite uncertainty in control, sensing, and possibly the
geometry of the environment. The framework assumes that uncertainty can behave
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as a worst-case adversary, within specified task-dependent bounds. If a given subgoal
cannot be attained with certainty assuming this worst-case behavior, then the task
is deemed unsolvable. In this thesis a guaranteed strategy for solving a task will
therefore refer to a sev of possibly conditional actions that are certain, in the presence
of this worst-case uncertainty, to accomplish the task in a bounded predetermined
amount of time.

1.4.10 Error Detection and Recovery

An important offspring of the LMT preimage planning methodology is Donald’s
recent thesis (see [Don87b] and [Don89}]). This work deals with the problem of
representing model error and the problem of Error Detection and Recovery. The
need for error detection and recovery arises naturally if one permits uncertainty in
the geometric shape of objects. This is because for many interesting tasks there
simply are no guaranteed plans in the sense just outlined. An example that Donald
cites is the task of inserting a peg into a hole in which the size of the hole can vary
due tc manufacturing errors. Certainly, if the hole is smaller than the peg, then the
peg cannot be inserted. Nonetheless, in many cases the hole will be large enough,
and it would be foolish not to try to insert the peg. Donald claims that a robot
should attempt certain tasks even if there is no guarantee of success, so long as there
is a guarantee that the robot will be able to ascertain whether or not its attempt
has succeeded. An error in Donald’s terminology is thus more subtle than the usual
notion thal au error occurs when an action does not have the desired outcome. An
error for which one can plan a recovery prior to execution time is not really an error,
merely one of many execution-tir.«e conditions for which the system needs to check
before deciding on its next action. In Donald’s framework, an error is a condition of
task failure for which it is impossible to plan a recovery at planning time. Thus the
claim is that a robot should attempt tasks even if an error is possible, so long as the
error is recognizable. Donald’s formulation makes use of the preimage methodology in
defining how a strategy nperates. In particular, his definition of failure and the error
recognizability condition are based on the preimage constructs of reachability and
recognizability. These are determined by the dynamics of the task and the available
sensors and termination predicates.

The important contribution of Donald’s work is that it moved away from the
requirement that a strategy be guaranteed to solve a task in order to be considered
a strategy. This is an important and subtle point, that forms the motivation for
the current thesis. By permitting strategies to fail, one can vastly increase the
class of tasks that one would consider solvable. Indeed, it is clear that in some
completely imperfect world, no task is ever guaranteed to be solvable assuming worst-
case adversaries. The real world is such a world. Yet many tasks are solvable simply
because they are attainable sometimes. Donald’s thesis made this notion very precise.
The aim of the current thesis is to extend some of these ideas, by considering tasks
that are solvable in an expected sense. Of great importance is the ability to loop
and try again, as suggested in Donald’s thesis. In a worst-case sense, looping does
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not help, since the strategy can always fail. However, by introducing the notions
of probabilistic failure, either through actions that have probabilistic outcomes or
through active randomization of run-time decisions, one can often guarantee task
solvability in an expected sense.

1.4.11 Randomization

In a slightly different direction, we should mention that randomization is a technique
that is sometimes used in optimizing algorithms. The stmulated annealing approach
[KGV] is a well-known technique. Roughly speaking the randomization of simulated
annealing helps to avoid local minima. For any given level of randomization the
system naturally converges to some subset of the state space. By reducing the level
of randomization in a principled manner, this subset is made to converge to the
desired optimal states. In the context of this thesis, randomization is used to avoid
deterministic traps. This is similar to the avoidance of local minima. However, there
1s no notion of changing the level of randomization in order to ensure convergence.
Indeed. for the most part we will assume that a desired goal is recognizable upon entry.
More general strategies might relax this assumption. relying instead on a probabilistic
prediction function to ensure that the goal is attained with high reliability.

Randomization has also been used in the domain of mobile robots. See for instance
[Arkin], who injects noise into potential fields in order to avoid plateaus and ridges.
[BL] have also investigated a Monte-Carlo approach for escaping from local minima
in potential fields.

Some probabilistic work has aimed at facilitating the design process. For instance,
(BRPM] have considered the problem of determining the natural resting distributions
of parts in a vibratory bowl feeder. This information is useful for designing both part
shapes and bowl feeders.

(Goldberg] is currently investigating probabilistic strategies for grasping objects.
That work, in parallel with the work of this thesis, is also interested in the development
of a general approach towards the analysis and synthesis of randomized strategies for
manipulation tasks.

1.5 Thesis Contributions

The contributions of this thesis lie both in adding randomization to the theory
of manipulation and in the practical demonstration of an assembly task using
randomization. The major contributions of the thesis are:

e Implementation of a Randomized Peg-In-Hole Task on a PUMA.
This experiment demonstrated the feasibility and usefulness of randomization
in assembly operations. The sensors available to the system consisted of joint
encoders on the robot and a camera positioned above the assembly. The camera
was used to obtain an approximate position of the edges of the peg and the hole.
These were used to suggest a nominal motion. If no edges could be obtained then
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the robot would execute a randomizing motion. The system was intentionally
not calibrated very well, in order to test the ability of the randomizing actions
to overcome incomplete information.

Introduction of a Formal Approach for Synthesizing Randomized
Strategies. There exist established formalisms for generating guaranteed
or optimal strategies in the presence of uncertainty. The LMT preimage
methodology and dynamic programming are two such formalisms. This thesis
builds on these approaches to include randomizing actions. Randomization is
seen as another operator, called SELECT, that randomly chooses between a
collection of partial strategies, under the assumption that the preconditions of
at least one such partial strategy are satisfied. Partial strategies are generated
by backchaining from the goal. The thesis elucidates the conditions under which
this approach is expected to complete a task.

Analysis of a Randomized Strategy with a Biased Sensor. The thesis
presents a detailed example in which sensing error consists of a pure bias.
The bias is unknown but of bounded magnitude. It is shown that a strategy
which interprets the sensor as correct can fail to attain the goal. In contrast, a
randomized strategy can avoid inaccurate information produced by the sensor
while ensuring eventual goal attainment. Furthermore, the randomized strategy
can rapidly attain the goal from certain start regions.

Nominal Plans. The thesis introduces the notion of a collection of nominal
plans as the choice set for a randomized strategy. This approach is a special case
of the general planning methodology for synthesizing randomized strategies.
The nominal plans play the role of the partial strategies in that methodology.
The difference is that the nominal plans are themselves generated as guaranteed
plans assuming favorable instantiations of error parameters. In particular, in
this thesis, the nomiual plans are strategies that are guaranteed to succeed in
the absence of uncertainty. A randomized strategy tries to follow these nominal
plans as well as possible despite uncertainty.

Progress Measures. Nominal plans sometimes define a progress measure on
state space. This is because nominal plans specify the ideal behavior of a system
in solving a task. Formally, a progress measure is a real-valued function on a
system’s state space that is zero at the goal and positive elsewhere. Distance
from the goal is a possible progress measure. If a strategy can guarantee that
it makes sufficient progress on average at each point of the state space, then
expected goal convergence is certain to be rapid.

Simple Feedback Loops. Strategies that only consider current sensed
information in making decisions are simple feedback loops. The thesis introduces
randomized simple feedback loops. These try to make progress relative to a
progress measure whenever possible and otherwise execute a random motion.
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e Random Walks. The thesis studies random walks, as these define the most

basic type of randomized strategy. A random walk forms a good model for the
behavior of a randomized simple feedback loop in the presence of probabilistic
errors. The thesis introduces the notion of an expected velocity as the expected
change in the progress labelling of a random walk. The thesis proves that
this expected velocity possesses properties similar to those of a deterministic
velocity. In particular, if a strategy everywhere makes expected progress towards
a goal, and if the progress measure consists of small numbers, then expected
convergence to the goal must be rapid.

Analysis of a Randomized Simple Feedback Loop in the Presence of
Unbiased Gaussian Noise. The thesis considers a simple feedback loop for
attaining a two-dimensional region in the plane. This is an abstraction of the
peg-in-hole problem. The system has available to it a position sensor and a
goal recognizer. The strategy is formulated assuming only that specific bounds
may be placed on the error distributions that describe the sensing and control
errors. Thus the strategy is known to converge eventually for all errors satisfying
these bounds. For an analysis of the strategy, the sensing and control errors
are each assumed to be unbiased two-dimensional normal variates. The thesis
shows numerically for a particular example that the convergence properties of
this randomized strategy are substantially better than those for a corresponding
guaranteed strategy. In particular, the region of fast convergence is considerably
greater.

Finite Guesses. On discrete spaces the operator SELECT naturally only needs
to guess between a finite number of possible strategies. Thus tae probability of
guessing an appropriate strategy is non-zero. In the continuouas domain, it may
be necessary to guess over an infinite number of strategies. However, the thesis
shows that under suitable conditions only guesses over finite sets are required.
The conditions amount to the requirement that whenever the system executes
a motion for some time, the predicted possible locations of the system at that
time form an open set.

Near-Sensorless Tasks are defined as tasks in which there is no sensing
except to signal goal attainment. Blindly inserting a key into a hole is one
such task. The thesis shows that in this context there are tasks for which
there exist guaranteed solutions that require an exponential amount of time to
execute in the worst case, while there exist randomized solutions that require a
polynomial amount of time to attain the goal, in an expe-ted sense. This result
demonstrates that randomization need not necessarily increase convergence
times.

-~
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1.6 Thesis Outline

Chapter 2 presents a more detailed outline of the thesis. This chapter also contains
further motivational material. The chapter is intended both as a second introductory
chapter and as a precis of the thesis.

Chapter 3 develops the basic approach. This is done in the discrete setting, for
simplicity. Fortunately, many of the results carry over to the continuous domain. The
basic idea is to use the traditional methodology for computing guaranteed plans as a
means of suggesting partial or nominal plans. Sensing uncertainty may prevent the
system from satisfying the preconditions of any particular nominal plan. However,
in some cases the system can readily satisfy the union of all the plans’ preconditions.
Then it makes sense for the system to randomly and repeatedly choose and execute
a nominal plan. The hope is that the system will eventually ¢t >se a plan whose
preconditions are satisfied, and which therefore will successfully accomplish the task.
Chapter 3 considers the conditions under which this type of strategy may be applied.
Of particular interest are tasks in which there is a progress measure. If the system
can locally make progress on the average, then the overall expected convergence time
may be bounded readily.

Chapter 4 extends this approach to the continuous domain. Some subtleties enter
into the picture. In particular, in order to be certain of eventual convergence, a
randomized strategy should only make guesses that have a non-zero probability of
success. Given an infinite number of nominal plans, as is possible in the continuous
domain. the probability of guessing correctly may actually be zero. Chapter 4
examines this problem and shows that often it is reasonable to consider only a finite
number of nominal plans.

Chapter 5 analyzes the task of moving a point on the plane into a circle, in the
presence of sensing and control uncertainty. This is a natural generalization of the
peg-in-hole problem considered at the beginning of the thesis. The analysis involves
an approximation by a diffusion process that establishes fast convergence times for a
range of goal sizes.
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Chapter 2

Thesis Overview and Technical
Tools

The purpose of this chapter is to provide a basic overview of the thesis. The chapter
is intended both as a seli-contained summary of the thesis as well as a guideline for
the results presented in the remaining chapters. We will motivate the basic problem,
present the technical tools and definitions, and mention the main results of the thesis.
All this will be done at a fairly high level, with the details of the definitions and proofs
left for future chapters. It is hoped that the early presentation of the main issues will
provide a cohesive guideline for t. : more technical points of the later chapters.

The first major section of this chapter provides a high-level perspective and
motivation. The second section is concerned with basic definitions. Towards the
end of the section we introduce the notion of randomized strategies. The third major
section of the chapter presents a detailed example that is intended to highlight the
importance of randomized strategies. Finally, the last section discusses in some more
detail the particular focus on randomized strategies taken by this thesis.

2.1 Motivation

In g=neral one should think of randomization as a primitive strategy, and thus as a tool
at the lowest level. One should not forget all the work on the synthesis of strategies for
solving tasks in the presence of uncertainty. Instead, randomization should be viewed
as an cperation that is superimposed on top of the work for generating guaranteed
strategies. Indeed, randomization is even physically superimposed on top of these
strategies. It is the combination of sensing, mechanics, and randomization
that achieves a task, not any one of these alone. We will study, primarily
in chapter 3, strategies that judiciously make use of sensing, predictive ability, and
randomization. The physically realizable solutions to tasks are those for which on
the average progress is being made towards the goal. The randomization ensures that
partially modelled system parameters may be ignored, while the sensing and task
mechanics ensure that progress is made t ‘wards the goal whenever the randomization

55
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has placed the system in a fortuitous position.

2.1.1 Domains of Applicability

The broadly intended domains of applicability for the material presented in this thesis
are:

e Parts Assembly and Manipulation.

— In the presence of sensing and control uncertainty.
— In environments with sparse or incomplete models.
— During the fine-motion phase of tight assemblies.

— For parts orientation and localization.
(And combinations of these scenarios.)
¢ Mobile Robot Navigation.

~ With noisy sensors.

— In uncertain environments.
o Facilitate Design.

— Of special purpose sensors useful for solving particular tasks.

— Of parts shaped to permit easy mechanical assembly.

The main focus of the thesis is within tr. first domain on this list. This domain
consists of tasks involving the assembly anu :anipulation of parts. Examples include
the mating of two or more parts, the grasping of a part, and the orienting and
localization of one or more parts whose initial configurations are unknown. By
localization we mean the constraining of a part’s configuration in a purposeful manner,
possibly as a prelude to some other operations. The archetypical example of a parts
mating operation is given by the task of inserting a peg into a hole. This is a classic
example, yet its generality remains. This generality stems from the observation that
almost any assembly involving rigid or nearly-rigid bodies may be viewed locally as
a peg-in-hole assembly. The tasks of grasping and orienting parts are themselves
fundamental to manipulation. In order to assemble two parts, these must be located
and manipulated. The manipulation may involve grasping or it may involve impact
operations, such as pushing or hitting. In some broad sense grasping subsumes these
latter operations, as they occur naturally at some scale during any operation involving
the contact of two or more objects. Finally, parts ultimately must be oriented and
localized in order to be assembled. A system need not necessarily be cognizant of the
localization operation, yet localization must occur at either the mechanical or sensing
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levels. More generally, a task that involves the transfer of objects from a state of
high entropy to an assembled state, such as the task of picking a part out of a bin
containing several different randomly oriented parts, determining the part’s pose, and
then placing it in some constrained locale, requires variations of all of these operations.
In particular, almost by definition, such a task requires considerable localization.

Most of the results of the thesis will be developed with the inspiration of these
examples in mind. However, the results are sufficiently general that they may be
applied to domains other than pure manipulation. Some of these are indicated in the
list above.

2.1.2 Purpose of Randomization

One of the key motivations for considering randomized strategies is given by
our description of manipulation tasks in the presence of uncertainty as methods
for reducing entropy. Specifically, parts are moved from a disorganized state
into an assembled state, from an unknown orientation to a known orientation,
froin an uunconstrained location to a grasped location, and so forth. Reducing
entropy is generally difficult, requiring considerable information about the world.
Randomization permits the view of an organized state as simply one of many random
states. By actively randomizing, a system can under suitable conditions ensure that
it will eventually pass through this desired state. (The suitable conditions effectively
postulate lower bounds on the probability of success.)

Standard approaches for solving tasks that involve the reduction of uncertainty
include:

e Perfection.

— Model the world perfectly.
— Reduce sensing errors to zero.

— Reduce control errors to zero.
e Plan for Uncertainty.

— Use sensing when possible to gain information from the environment.

* Forinstance, use a combination of position and force sensors in order to
gain more information than either sensor could provide in isolation. As
an example, a force sensor might register contact with a table, while a
position sensor could localize that contact to within some small range.

* Build special sensors to detect particular system states. This includes
light beams at finger tips, touch sensors, special calibration devices,
lasers, structured light, and so forth.

~ Use the mechanics of the domain to reduce uncertainty.

* For instance, bump into an object in order to reduce the uncertainty
of the relative position of that object.
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* Drop a polyhedral part onto a table in order to reduce its orientations
to a manageable number.

* Design parts and feeding/assembly devices concurrently, with the aim
of simplifying the grasping or localization process.

~ Strategically combine sensing and action.

* For instance, in order to move one part within a certain distance of
another object whose location is unknown, it makes sense to first bump
the part into that object, then back away by the desired distance, if
possible.

o Tolerate Failure.

— Give up the insistence on a guaranteed strategy as the only means of
solving a task.

Accepting Uncertainty

The assumption that the world is perfect is much too strong an assumption to be
realistic. Instead, as we outlined in section 1.4, much effort has been devoted over
the last few decades to accounting for uncertainty explicitly. The aim has been to
reduce uncertainty or entropy by judicious use of sensing and action. The difficulty
with such approaches is that they tend to make strong assumptions about the world.
For instance, generally those frameworks that produce guaranteed plans have trouble
dealing with tiny variations in geometry. A strategy that slides one object on top
of another may fail if the component surfaces contain small nicks and protrusions.
Similarly, if a sensing error is larger than expected, or if a sensor contains an unknown
bias, a strategy that relies crucially on the validity of its assumptions will fail. This
defeats the philosophy motivating the construction of planners that explicitly account
for uncertainty. That philosophy states that one should from the outset be aware of
uncertainty, rather than ignore it in the hope that the plans developed for a perfect
world will be good enough in the face of uncertainty. The philosophy is defeated
because the strategies developed in the quest of guaranteed plans are only as good as
the assumptions preceding them. Of course, everyone is aware of this dependence, yet
it lingers. More importantly, the dependence can lead to the desire to model the world
accurately, to improve one's sensors, and to improve one’s control systems, solely for
the sake of solving a particular task more easily. These are highly worthwhile goals,
but they run the risk of ignoring a set of crucial intellectual questions:

o What is the information needed to solve a task?
o What tasks can be solved by a given repertoire of operations?

o How sensitive are solutions of tasks to particular assumptions about the world?
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Indeed, the design of better systems for dealing with uncertainty should be
interwoven with the investigation of these questions. The answers to these questions
will themselves facilitate the design of better systems for dealing with uncertainty
and will improve planning technologies.

A key approach listed above is that of tolerating failure. This is a fairly recent
idea within the formal planning methods of robotics (see [Don87b}). It is important
because 1t reminds us of the right psychological framework. No task possesses an
absolutely guaranteed solution. Instead of searching for guaranteed solutions, one
should try to answer the three questions above, for any task of interest. There is
a spectrum of assumptions, a spectrum of strategies, and a corresponding spectrum
of outcomes for any given assumptions and strategy. Failure is always one of the
possible outcomes in this spectrum. The question is, under what assumptions?

Clearly, the work on uncertainty over the past several decades has been trying to
answer the three questions. They remain unanswered in generality. This thesis is one
further atiempt to look at a particular aspect of the answer to these questions.

Randomization is Everywhere

Randomization enters into the investigation of these questions at the simplest level.
In some sense randomization is omnipresent. For instance, uncertainty that is due to
noise, either in sensing or control. may be thought of as randomization on the part of
nature. The basic issue that this thesis begins to address is how active randon.ization
on a robot’s part can aid in the solution of tasks.

Some advantages of randomization are:

o Increase the class of solvable tasks.
e Reduce the dependence of task solutions on assumptions about the world.
¢ Simplify the planning process.

We will discuss these properties more throughout the thesis. In brief, the class of
solvable tasks is increased because the class of strategies is enlarged beyond the class
of guaranteed strategies. Recall that a guaranteed strategy is certain to accomplish
a task in a bounded predetermined number of steps. Randomization increases the
class of solvable tasks because the class of randomized strategies includes strategies
whose success is not guaranteed on any particular step, but merely in an expected
sense. Randomization decreases dependence on assumptions when it ensures that a
system will eventually behave in a manner compatible with unknown or unmodelled
parameters. There are limits, of course, such as trap states or degenerate goals that
must be avoided by any strategy. Finally, planning is simplified whenever a planner
may substitute a simple randomized strategy in place of a possibly complicated
guaranteed strategy. For instance, a random walk is a simpler strategy than a spiral
search. It requires less history, although it may require more time to converge to a
desired goal region.
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Eventual Convergence

In a sense we may think of randomization as a means of traversing the state space
in a blind manner. Thus randomization forms the most primitive of strategies for
solving a task. By performing a random walk in state space, the system will, under
suitable conditions, eventually pass through the goal. The suitable conditions amount
to guaranteeing a minimum probability of success.

Of course, there are some disadvantages to randomization. If manipulation tasks
may indeed be thought of as means of reducing entropy, then randomization seems
inappropriate. Indeed, one would expect randomization to increase entropy. However,
this is not always the case. Furthermore, it says merely that one might have to wait a
long time before the system attains a goal. Other difficulties arise in ensuring that the
randomization actually covers the space of interest, that is, that the goal is reachable.
A third difficulty arises in terminating a strategy. Somehow there must be appropriate
information that enables a system to recognize or predict goal attainment. All these
issues will be dealt with in the thesis.

Fast Convergence

Of particular interest is the question of convergence times. It clearly would be
inappropriate to try to insert a peg with six degrees of freedom into a hole using
purely random motious. Ihr hnle forms a relatively small region within the six-
dimensional configuration space of the peg. Finding this region without any sensing
from far away would require an unreasonable amount of time. However, if one can
bring the peg close to the hole using available sensors, then one can reduce the space
that must be searched. If one can also remove some of the peg’s degrees of freedom
by making contact with portions of the hole, then one can further reduce the space
that needs to be searched, by reducing its dimensionality.

2.2 Basic Definitions

This section defines the basic tools used by the thesis. This includes the spaces
of interest, the representation of uncertainty, and the types of strategies explored
throughout the thesis.

2.2.1 Tasks and State Spaces

A task is modelled as a problem on some state space. The state space may be discrete
or continuous. The state space should consist of all the parameters of a system that
are required to predict its future behavior. In other words, knowing the current state
of the system and some action applied to the system, it should be possibie to predict
the resulting state or states of the system without reference to past states.

A task is specified as the attainment of some goal region in state space. Sometimes
a starting region may be specified as well.
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lGravity

Figure 2.1: This figure indicates three stable configurations of a planar Allen wrench
lying on a horizontal table. These coniigurations may be used to define a discrete
state space.

We should mention briefly that the configuration space [Loz83] of a system is the
space describing the degrees of freedom of the system. For instance, the configuration
space of a rigid object in three dimensions is a six-dimensional space corresponding
to three translational and three rotational degrees of freedom.

The relationship between the state space and the configuration space of a system
depends on the dynamics of the system. For simplicity, we often assume that the
dvnamics are first-order and that the future state of the system can be predicted
from its current configuration and an applied velocity. In that sense the state space
and the configuration space are identical. We will thus often not distinguish between
the two representations, although it should be understood that this is not sufficient
if the dynamics are of a higher order.

Continuous Space

An example of a task specified in a continuous space is given by the peg-in-hole
problem of section 1.1. The relevant state space for that problem is a three-degree-of-
freedom space, consisting of two iranslational and one rotational degrees of freedom.
Actions are specified as changes in position and orientation. The goal is the range of
positions and orientations for which the peg is directly over the hole. This is a fairly
small volume in the three-dimensional state space.

In general in this thesis we will assume that a continuous state space is some
bounded subset of R", for appropriate dimension n. Such a space corresponds
naturally to a system with several translational degrees of free”..m, but no rotational
degrees of freedom. However, natural generalizations to n-dimensional manifolds
exist. See, among others, [Loz81], [ScShII], and {Can89).

Discrete Space

An example of a discrete state space is given by the stable orientations of a
polyhedral part resting on a horizontal table under the influence of gravity. Figure
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Figure 2.2: A two-dimensional peg-in-hole problem. Also shown are three states that
might be used in a discrete approximation to the continuous problem.

2.1 depicts the planar case. The figure shows three stablc orientations of a planar
part resting on a horizontal table. By tilting the table for a short amount of time the
part can be made to roll between different such configurations. While the analysis of
the forces required to move the part may require consideration of a continuous space.
cnce this analysis has been performed, it is sufficient to consider the resulting discrete
space in planning operations to orient the part stably. This example is taken from

Discrete representations also arise as approximations to continuous spaces. For
instance, one might place a fine tiling over a continuous state space, then regard each
of the tiles as a state in a discrete state space. Finally, sometimes tasks formulated
in continuous spaces may be transformed naturally into a discrete representation.
For instance, consider the planar task of inserting a two-dimensional peg into a two-
dimensional hole (see figure 2.2). Assume that the peg can only translate, but not
rotate. If the peg has made contact with the horizontal edges near the hole, then
the problem can be represented as a three-state system. One state corresponds to
contact with the edge to the left of the hole, another state corresponds to contact
with the edge to the right of the hole, and the third state corresponds to entry into
the hole. While this representation discards some information, such as the distance
of the peg from the hole, it still retains the basic gcomctrical celativuslips required
to attain the hole.

The discrete spaces treated in this thesis are assumed to be finite. Thus a discrete
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state space is simply a finite set S = {so, $1,52,--.,9n}, for some n. Most of the
development of the theory of probabilistic strategies will be done on finite discrete
spaces (see chapter 3). This is primarily a device for simplifying the presentation. The
results carry over with appropriate modifications to continuous spaces. The extension
to continuous spaces is handled in chapter 4.

2.2.2 Actions

Aclions are transforinations on the state space. There are three broad classes
of actions: deterministic, non-deterministic, and probabilistic. In some sense, the
category of non-deterministic actions includes deterministic and probabilistic actions
as special cases. Another special case is given by non-deterministic actions whose
underlying non-determinism is constrained. These actions fall under the category of
partial adversaries, which we discuss below as well.

In terms of information content, the ordering of action categories by decreasing
certainty is: DETERMINISTIC, PROBABILISTIC, PARTIALLY ADVERSARIAL, NON-
DETERMINISTIC.

Deterministic Actions

A deterministic action maps each state of the state space to some other state. This is
most easily represented in the discrete case. If s € S is a state, and A is an action, then
A(s) is some other state in S. For instance, in the three-state peg-in-hole example of
figure 2.2, an action might correspond to the operation MOVE-RIGHT. Denote the
three states by Sright, Steft, Shole, COTTesponding to contact with the edge to the right of
the hole, contact with the edge to left of the hole, and entry into the hole, respectively.
Then one might have that MOVE-RIGHT(Sright) = Srights MOVE-RIGHT(S1ert) = Sholes
and MOVB-R.IGHT(ShO]e) = Shole:

In the continuous case, executing an action generally entails performing some
operation over some duration of time. For instance, for a simple first-order linear
system, an action may correspond to executing a velocity over some time interval. In
that case, if x € R is a state of the system, then an action is of the form (v, At),
and the effect of an action is to move x to the state x + Atv.

Non-Deterministic Actions

A non-deterministic action is a relation on the state space rather than a function.
It transforms each state to a set of states. The purpose of a non-deterministic
action is to model uncertainty. This may correspond either to non-determinism in
the transitions specified by the action, or it may simply correspond to a paucity of
knowledge in modelling these transitions. In the discrete case we will write the effect
of a non-deterministic action as F4(s). This is called the forward projection of the
state s under the action A. The forward projection is a subset of the state space. A
similar representation exists for the continuous case, although now the action must
also include a time parameter. '
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Figure 2.3: Graphical representation of a non-deterministic action A;.

Figure 2.3 depicts a four-sta.e system, in which action A; non-deterministically
maps state so to the three other states. In other words, Fy,(so) = {s1, s2, 53}

A non-deterministic action measures the worst-case behavior of the system.
Nothing is said about the actual likelihood that a particular transition will be taken.
In other words, if a state s; appears in the set F4(s), then one must assume that
action A might cause state s to move to state sys. However, one cannot be sure that
this will ever occur.

One view is to imagine an adversary, who can force state s to move to state sy
whenever this would be to one’s disadvantage, but who also can move s to some other
state in F4(s) whenever one would actually like to attain s,. This is what is meant
by a worst-case modelling of an action.

Partial Adversaries

As we have indicated, the non-deterministic representation of actions provides a
worst-case view which may considerably overestimate the uncertainty in the actions.
For instance, consider a first-order linear system in R2?, governed locally by the
equation x(t) = Xo + t v, where X is the starting state, v is the actual velocity of the
system, and ¢ is the elapsed time. Suppose in fact that the starting state is the origin,
and that the action consists of commanding the nominal velocity (1,0) for some time
interval At. Suppose that the effect of this action is modelled non-deterministically.
In particular, any velocity of the form (1,¢) can result, where ¢ € [-0.25,0.25]. Now
imagine that one repeatedly commands this action, say 1000 times, each time for
duration At = 1. The non-deterministic representation says little about the actual
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Figure 2.4: This figure shows the possible locations of the system after executing
a commanded velocity subject to uncertainty for 6 time units. The commanded
velocity is (1,0). The effective velocity is given non-deterministically by (1,€), with
¢ € [-0.25,0.25]. The figure also shows the final location if the error ¢ is fixed. In
this case the resulting motion is repeatable.
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location of the system after these 1000 actiors. All one can say for sure is that the
z-position will be 1000, while the y-position will lie in the range [—250,250]. See
figure 2.4 for the state of the system at ¢ = 6.

Indeed, if an ad- ersary could at each instant in time choose € arbitrarily within the
range ' -0.25,0.25), then this is the best possible prediction of the future state of the
system. Yet, it may turn out that the system cannot actually behave in this worst-case
manner. In particular, the non-deterministic representation of the velocity as (1,¢)
may be due to a fixed but unknown bias in the control system. Thus, after executing
the velocity for time ¢t = 1000, the system is actually at the location (1000,1000¢),
with fixed ¢ € [—0.25,0.25]. Offhand, this case may not seem any better than before;
the prediction of the final state of the system again places the y-coordinate somewhere
into the range [—250.250]. However, if one could make observations of the system’s
position at some time after initiating the motion, then one could accurately predict
the final location of the syvstem. More importantly, the action is repeatable. In other
words, whenever the system starts at the origin, subject to the commanded velocity
{1.0) for time ¢t = 1000, the system will wind up at the location (1000.1000¢), where
¢ i1s seme fixed number in the range [-0.25,0.25].

One way to view the previous example is to realize that the non-deterministic
choices possible at any instant in time are coupled. In this example, nature cannot
choose the velocities arbitrarily at every instant in time. Instead, the fixed bias
constrains these choices over time. Only the bias itself is arbitrary and unknown. Said
differently. the underlying uncertainty does not behave like a worst-case adversary.
but merely like a partial adversary. Choices made by the adversary constrain further
choices. From a predictive point of view one may still wish to model the system in a
worst-case manner. However. one can often take advantage of the coupling between
the unknown parameters of the system. without initially knowing the instantiation
of these parameters. In the previous example this advantage takes the form of being
able to execute an action repeatably. We will demonstrate another example involving
sensing biases in section 2.4.

One should realize that this is a particularly simple example. In general there
may be several components to an error. Some of these may behave adversarially,
some may behave like partial adversaries, and some may behave probabilistically (see
the next paragraph). For insiznce, it is quite common to have an error that consists
of biased noise. In this case the bias is like a partial adversary, while the noise is
probabilistic.

Probabilistic Actions

Probabilistic actions are a special case of non-deterministic actions, in which it is
possible to assign a probability density function to the forward projection. Consider
in the discrete case the forward projection F4(s) of some state. This set 1s of the
form Fa(s) = {s1,---.8,}, for some set of states s;,...,s,. For a probabilistic action
A. one can assign to each state s, a probability p,. This means that if the system
1s initially in state s, and one executes action A, then state s; will be attained with
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probability p;.

A probabilistic representation of an action carries with it considerably more
information than does a non-deterministic model. Clearly not all actions may thus be
modelled. For instance, in the example of figure 2.4, if the error in the commanded
velocity is indeed a fixed but unknown bias, then one cannot model it as a probabilistic
action. However, if the error is due to noise, with a known bias, then it makes sense
to think of the error ¢ as a random variable in the range {—0.25,0.25]. In that case,
the extra information provided by the probabilistic representation manifest itself via
the central limit theorem. In particular, suppose thac the basic action consists of
commanding the velocity (1,0) for time At = 1. Now imagine applying this action
1000 times consecutively. Then the central limit theorem tells us that the y-coordinate
of the final position of the system will be normally distributed about 1000u,. Here
i is the expected value of ¢, that is, the bias in the noise.

2.2.3 Sensing

Sensing aids in reducing uncertainty. A system that observes its behavior can
sometimes compensate for errors in control. However, uncertainty enters into sensing
as well. We will consider a spectrum of sensing uncertainty, analogous to the various
forms of action uncertainty. Specifically, of interest are perfect sensing, sensing with
probabilistic errors. sensing with non-deterministic errors, and sensorless systems,
that is systems with infinite scnsing uncertainty. Closely related to the sensorless
systems are near-sensorless systems. in which there is just enough sensing to detect
task completion.

In terms of information content, the ordering of sensing categories by decreasing
certainty is:  PERFECT. PROBABILISTIC, NON-DETERMINISTIC, NEARLY-
SENSORLESS. SENSORLESS. As with control uncertainty, there are also PARTIALLY
ADVERSARIAL versions of non-deterministic sensing.

Perfect Sensing

A perfect sensor is one that reports the system’s state with complete accuracy. It is
fairly easy to plan strategies for such systems, even if control is uncertain. We shall
discuss this issue further below.

Imperfect Sensing: Basic Terms

An imperfect sensor is a sensor that returns a sensed value that need not be the actual
state of the system. Generally. given a state z of the system, there is a collection of
sensor values {z*} that might be observed. For each sensed value z*, the system can
infer that the actual state of the system must lie in some set of interpretations I(z*).
The exact nature of the interpretation set depends on the type of sensor.

The next few paragraphs discuss imperfect sensors in more detail, as well as
provide examples of such sensors.
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Figure 2.5: This figure shows the actual location z of a system, along with an observed
sensor value r*. The disk bounded by the solid circle depicts the range of possible
sensor values assuming a bounded but unknown sensing error. The disk bounded by
the dashed circle depicts the possible interpretations of the observed sensor value.
Notice that the actual state of the system is indeed a possible interpretation of the
observed sensor value.

Imperfect Sensing: Non-Deterministic Sensing

In the non-deterministic case, for each actual state z of the system, there is a collection
=(z) = {I(z")} of possible interpretation sets that might result upon sensing. There
is one interpretation set I(z") for each possible sensor value z*. No further assumption
i1s made about the actual likelihood of observing a particular sensor value . This is
analogous to the worst-case representation of uncertainty in actions. Similarly, each
interpretation set /{z*) is a set of possible states of the system. Again no assumption
is made about the actual likelihood that the system is in a particular state in the set
I(z*), given that z* has just been observed.

As an example, imagine that the state space is a subse: of the real line. Suppose
that whenever the actual state of the system is at the point z, then the range of sensor
values that the system might observe is given by the interval (z — ¢,z + €) for some
e > 0. This is sometimes referred to as an unknown but Lounded model of uncertainty.
Clearly, if the system observes a sensor value z*, then the set of interpretations of
that sensor value is given by the interval I(z*) = (z* — ¢,z" + €). Figure 2.5 depicts
a two-dimensional example.

Imperfect Sensing: Probabilistic Sensing

A probabilistic sensor is an imperfect sensor for which there exists a probability
density function over the range of possible sensor values. For instance, given a
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position z € R", the range of sensor values z" might be described by a normal
distribution centered at z. Inverting this collection of distributions using Bayes’ rule
allows one to construct for each sensor value z* a set of interpretations I(z*). This
set of interpretations is itself a probability density function describing the likelihood
that the system is in state z given that one has observed sensor value z*.

Imperfect Sensing: Sensorless and Near-Sensorless Tasks

In sensorless tasks there is no sensing, whereas in near-sensorless tasks there is no
sensing except to signal goal attainment. Without sensing a system must rely entirely
on its actions and predictive ability to attain the goal. In the near-sensorless case
this is essentially true as well, except that there is an additional bit of information
which signals success should the goal ever be attained. This is useful for systems that
repeatedly execute a loop that has some chance of attaining the goal but that is not
guaranteed to attain the goal. See below. We prove later (see section 3.13.2) that the
class of tasks solvable using a sensorless system is very much like the class of tasks
solvable using a near-sensorless system. Of course, for any particulzr task, adding a
goal recognizer can change the task from being unsolvable to being solvable.

Any open-loop task is by definition a sensorless task. For instance, the gross
motions used to manipulate objects in uncluttered environments are examples of
sensorless tasks. Within the fine-motion phase of assembly an example of a sensorless
task is the process of orienting parts by pushing one part against another. This is
similar to the palletizing that occurs when for instance luggage containers are loaded
onto airplanes. The containers are rolled onto large loading lifts that lift the containers
from ground level up to the cargo door of a plane. The containers are generally not
vet oriented properly after having been rolled onto the loading lifts. However, the
platform of the loading lift consists of motorized wheels that push the container into
a corner of the lift assembly. The result is that the the container is oriented properly
in the absence of any sensing. Many feeder mechanisms operate on this principle.
[Mas85] refers to such operations as funnels. Indeed, a funnel for filling a jar with
water or fiour is a classic example of a strategy that uses task mechanics rather than
sensing to constrain the behavior of a system.

More generally. many operations involve aspects of sensorless strategies. This is
because often some mechanical interaction between parts occurs below the resolution
of available sensors. The motion of an object due to impact during a gasping operation
is one example.

Examples of near-sensorless system can easily be constructed from examples of
sensorless systems. Essentially the goal recognizer acts as a verification mechanism
that ensures that the task really has been accomplished. This is useful particularly
when one’s assumptions about the task mechanics are subject to uncertainty.

In the context of this thesis, an example of a near-sensorless system is given by the
behavior of a randomized strategy such as the peg-in-hole strategy of chapter 1, once
the sensors no longer provide useful information to guide the assembly. Essentially
the strategy is operating without any relevant sensing. However, the goal recognizer is
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used to terminate the strategy. In the peg-in-hole case, goal recognition was achieved
by noting that the camera image indicated that the peg had entered the hole.

2.3 Strategies

Of great importance is the process by which one synthesizes strategies to the various
types of tasks discussed above. Part of the question is the definition of a strategy.

2.3.1 Guaranteed Strategies

Traditionally, guaranteed strategies and optimal strategies have been the focus of
attention. These in turn may be subdivided by the manner in which they treat
sensory and predictive information. At one extreme is a strategy that makes full use
of sensing history and forward projections of the current state. At the other extreme
is a simple feedback loop, which is a strategy that only considers current sensory
information in making decisions.

Recall that by a guaranteed strategy we mean a set of possibly conditional actions
that are certain to accomplish a task in a bounded predeterrined amount of time.

2.3.2 Randomized Strategies

This thesis introduces a class of strategies complementary to guaranteed strategies,
known as randomized strategies. One of the characteristics of a guaranteed strategy
is that it attains its goal in a bounded predetermined number of steps. In contrast. a
randomized strategy consists of a sequence of operations that only has some non-zero
probability of attaining its goal. The key to success with a randomized strategy is
to place a loop around this sequence of operations. This means that one repeatedly
executes the sequence of operations inside the loop until the sequence eventually
succeeds.

A key ingredient to randomized strategies is active guessing or randomization.
This takes the form of either guessing the location of the system or of executing
an action that has been randomly selected from some applicable set of actions.
Guessing the location of the system is a means of compensating for uncertain sensing
information. Executing a random action is a means of avoiding getting stuck in some
location from which there is no guaranteed strategy of escape. Clearly one may draw
connections between these two forms of randomization.

The motivation for considering randomized strategies is to increase the class
of solvable tasks, to reduce knowledge requirements, and to simplify the planning
process. This is facilitated in two ways. First, by not insisting on guaranteed plans,
one automatically broadens the class of tasks for which one can provide solutions,
although the solutions are now solutions in a probabilistic sense. Second, by actively
randomizing at both the sensing and action levels, one can reduce the knowledge
details needed to solve a task. This makes it easier to plan solutions to tasks for
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Figure 2.6: This figure depicts schematically how a system might update its run-time
knowledge state using both prediction and sensing. First, the system forward projects
the previous knowledge state K, using the current action A. Second, the system
intersects the resulting set F4(K;) with the interpretations of the current sensed
value z*. K is the updated knowledge state.

which there exist guaranteed solutions. In addition, it permits some tasks, for which
there are no guaranteed solutions, to be solved in an expected sense. In effect,
randomization blurs the details of the environment. For instance, in the peg-in-
hole problem of figure 2.2, if the horizontal edges contain slight nicks, then the peg
could become stuck while sliding. Rather than plan for every possible nick explicitly,
it makes sense to invoke some type of randomizing action that is likely to start the
peg slif’ng again.

2.3.3 History and Knowledge States

We mentioned above that strategies may be classified by their use of history. This
applies both to guaranteed strategies and to randomized strategies. Another way
to phrase this is to characterize the knowledge state of the system at run-time. A
knowledge state is always some subset of the state space. It reflccts the certainty with
which the system knows its actual state. In the case of perfect sensing, the knowledge
state is a singleton set containing the actual state of the system. More generally, a
knowledge state can be an arbitrary subset of the state space.

Systems differ in the manner by which they update their knowledge states. A
simple feedback loop only considers current sensed values. Thus the knowledge state
of a simple feedback loop is always the most recent sensory interpretation set I(z*),
where z° is the most recently observed sensor value.

A system that makes full use of sensing history updates its knowledge state by
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forward projecting the previous knowledge state and intersecting it with the current
sensory interpretation set. We will state this semi-formally for the discrete case, in
the next paragraph. A similar description exists for the continuous case; it is depicted
pictorially in figure 2.6. Both these descriptions apply to non-deterministic actions
and non-deterministic sensing. In the probabilistic setting, the analogous operation
is given by the Kalman filter (see {Brown], for instance).

Turning now to the discrete case, suppose that the most recent knowledge state
is K, that the action just executed is A, and that the sensory interpretation set is I.
The new knowledge state derived from this information is given by K, = F4(K;)I.
In other words, the previous knowledge state is first forward projected to account for
any changes due to the executed action. The resulting set is then intersected with the
sensory information. Updating the knowledge state in this manner on each time step
ensures that full use is made of sensing history and of predictive ability, within the
bounds given by the non-deterministic description of sensing and action uncertainty.

2.3.4 Planning
Planning Guaranteed Strategies

Once one has the notion of a knowledge state, planning guaranteed strategies is
conceptually simple. Specifically, one backchains in the space of knowledge states,
starting from the goal. This process is sometimes referred to as dynamic programming.
It is discussed in further detail for the discrete context in section 3.2.4. Chapter
4 discusses the [LMT] preimage framework, which is a backchaining approach for
computing guaranteed strategies.

Briefly, backchaining proceeds as follows. Given a collection of goal states {G,},
the planner determines all pairs of knowledge states and actions (K, A), for which
attainment of one of the goals G, is guaranteed. This means that for each sensory
interpretation set I(r*) that the run-time system might observe upon execution of
action A, the updated knowledge state lies inside a goal. Formally one must have
that F4(K)N1(z") C G, for some a. The collection of all knowledge states K that
satisfy this condition comprises a new collection of goal states for the next level of
backchaining. This proess is repeated until a knowledge state is constructed that
includes the initial state of the system, or until there are no further knowledge states
to be constructed.

Planning Randomized Strategies

The aim of this thesis is to analyze randomized strategies and explore methods for
synthesizing these strategies. In the context of this thesis randomization takes the
form of either guessing the current state of the system or of executing a randomizing
motion. These two approaches are very similar, as is made clear by considering
knowledge states. As an example, consider again the discrete representation for
the peg-in-hole task of figure 2.2. Suppose that the initial knowledge state is
K = {Sieft, Srighe}. This means that the system knows that it is on a horizontal
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edge near the hole, but is unsure of which one. The state-guessing approach
consists of randomly guessing that the actual state is either state s, or state
Sright; then executing a motion designed to attain the goal from that state. The
randomizing-action approach consists of randomly moving either left or right, in the
hope of attaining the goal. For this simple example the two approaches are trivially
equivalent.

More generally, this example suggests that both state-guessing and action-
randomization may be viewed as the random selection of a knowledge state that is a
subset of the system’s actual knowledge state at run-time. In other words, suppose
that the system knows that it is located somewhere in the set K, and suppose further
that this is not enough information to accomplish a task successfully. Then it makes
sense to guess between some collection of smaller knowledge states K, ..., K, that
cover K, assuming that for each of the knowledge states K; there is a strategy for
attaining the goal. Selecting one of the states K; may be viewed either as guessing
an artificial sensory interpretation set or as selecting a random sequence of actions.
The sensory interpretation set is just the set K;, while the sequence of actions is
the plan associated with K, for attaining the goal. This suggests that the synthesis
of randomized strategies may be built on top of the backchaining approach used to
synthesize guaranteed strategies. The guaranteed approach is simply augmented with
an additional operator, SELECT, that permits the system to make random choices.
Additionally, one must worry about whether it is possible to repeat this guessing
operation should the first guess fail to attain the goal. Chapter 3 examines these
issues in greater detail, while section 2.6 later in this chapter provides a further
outline.

2.4 A Randomizing Example

Let us continue with an example. The purpose of this example is to demonstrate the
relationship between guaranteed strategies, local progress, and randomization in a
continuous space. The scene is the two dimensional plane. The state of the system is
a point on this plane. The goal is a circle of radius r centered at the origin. The task
consists of moving the system into the goal. This representation might, for instance,
be the appropriate formulation of the problem of sliding a peg towards a hole on
a level surface surrounding the hole. The point in this case corresponds to some
reference point on the peg, while the plane corresponds to the two degrees of sliding
freedom available to the peg.

If sensing and control are perfect, then the task is accomplished by sensing the
start position, then moving in a straight line towards the origin, stopping once the
circle is cntered. Supposc Licwever that sensing is imperfect. Then it may not always
be clear in which direction to move. Let us look at a special case involving imperfect
sensing, while retaining the assumption of perfect velocity control. In addition, we
will assume that the goal is independently recognizable, that is, if ever the state of
the system enters the goal, then some sensor will signal goal attainment. In the peg-
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Figure 2.7: If there is a constant sensing bias and the system interprets the sensor as
correct, then the system may converge to a point otn.r than the goal.

in-hole example, this might be achieved by noting that the peg is falling into the hole,
that is. by using force sensors to detect that contact with the surrounding surface has
been broken. Another possibility is to sense the peg’s height in the z-direction.

In general we will model sensing errors as error balls. Specifically, we will assume
that if the actual location of the system is given by the point x, then the sensor will
return a sensed value x* € B,,(x), where B,,(x) is the ball of radius ¢, centered at x.
As we have mentioned before, B,,(x) represents the non-determinism in the system's
knowledge of the sensor. It may be the case that all possible positions in B,,(x) could
be returned by the sensor, or simply that some subset could be returned. Further, the
sensor may return values probabilistically distributed over B, (x), or it may return
values in an adversarial manner. Without further information, the system must plan
as if the sensor is actually acting as an adversary.

Suppose. however, for the sake of this example, that the sensor always returns the
actual location of the system offset by a fixed bias b. The actual bias is unknown
to the system, merely its maximum magnitude bmax is known. So. one may take
€ = bpay = maxy, |b|. In what follows we will draw all figures as if b = (5,0), with
0 < b < byax. However, this is just for convenience of exposition; the bias may lie
anywhere inside the disk of radius byay.

Now consider what happens if the system continues to interpret the sensor as
correct. See figure 2.7. If the system is at location x, then the sensor will report that
the system is at x + b. Aiming for the origin, the system thus will move in a straight
line parallel to the vector —(x + b). This line points directly from the actual location
x to the point —b. If by is less than the radius of the goal, then the system will
still successfully attain the goal. So suppose that the point —b lies outside of the
goal. It is still possible for the system to wind up in the goal, namely if and only if
the line connecting the two points x and —b passes through the goal circle of radius
r (recall that there is no control error). See figure 2.8. Thus there is one region from
which this strategy is guaranteed to attain the goal, and another from which this
strategy causes the system to converge to the point —b (recall that the sensing error
is a pure bias, without any superimposed noise). Of course, if b were known, then
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Figure 2.8: If the line from the system’s starting configuration to the negative bias
passes through the goal, then the system will converge to the goal. Otherwise, it will
converge to the negative bias. This example assumes perfect velocity control.

the strategy could be modified to always achieve the goal, but b is unknown. Merely
bmax 15 known to the system. Let us denote the region from which the strategy is
guaranteed to attain the goal by P.

Suppose that we are interested in a simple feedback strategy designed to attain
the goal, by making judicious use of sensors and randomizing when necessary. In
particular, the strategy may not retain any past sensing information, but must base
all its decisions on current sensed values. We will consider such a situation for the
discrete case in section 3.12.3. In particular, we want a strategy that will make
progress towards the goal when possible and otherwise will randomize its position.
Consider then a circle of radius d, centered at the origin. The radius d is to be
chosen in such a way that progress is possible towards the goal whenever a sensed
value hes outside of the circle, while progress is not guaranteed whenever a sensed
value lies inside the circle. We will discuss choosing d as a function of control and
sensing uncertainty in greater detail in chapter 5. For the current example it makes
sense to take d = ¢, = b,,,. This is because whenever a sensed value appears within
¢, of the origin, the system cannot be sure on which side of the origin the actual
position is located, and thus cannot decrease the distance to the origin. It is true
that the system can in general rule out locations that lie within the goal, and thus
using d = ¢, is overly conservative if one is merely interested in making progress
towards the goal, as opposed to making progress towards the origin. If one wanted to
take this added information into account then using d = \/€2 — r? is appropriate (see
figure 2.9). In either case, if a sensed value x* appears outside of the circle of radius
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Figure 2.9: ¢, is the sensing uncertainty and r is the goal radius. d is the minimum
distance form the origin that a sensed value must lie in order to guarantee progress
towards the goal. If velocity control is perfect, taking d = ¢, is sufficient, but this
figure shows that a smaller value of d is often possible.

d, then commanding a velocity in the direction —x" is guaranteed to move all possible
interpretations of x*, that is all points in the region B,,(x*) — G, closer towards the
goal G. Furthermore, one can move in the direction —x* for a total duration that
changes distance by less than 2 (|x*| — d), and still be sure that progress towards the
goal has been made, independent of the actual location x € B, (x*) — G.

Now consider shifting the circle of radius d by —b. Denote the disk circumscribed
by this circle by D. In the context of this special example, this disk represents the
range of actual positions for which the returned sensor readings lie within distance
d of the origin. Thus the disk consists of those locations of the system for which
the simple feedback strategy cannot be sure of making progress towards the goal.

(Recall, that the system knows bmax but not b.) Observe, that if d = \:ef —r? and
b = bmax = €, then D intersects the goal at the same points at which the boundary
of the guaranteed region P intersects the goal circle. If d is larger than this, or b is
smaller, then the disk D actually overlaps the region P. Thus there are three regions
that characterize the behavior of this simple feedback strategy: (1) The region D,
in which the strategy cannot guarantee progress, (2) the region P (or some subset
thereof if D overlaps P) in which the simple feedback strategy can both guarantee
progress and eventual goal convergence, and (3) the region W = R2 -~ (GUP U D), in
which the strategy can guarantee progress locally but not eventual goal attainment.
For this example, if the system starts off in W, then it will necessarily enter the disk
D, simply because the system always moves towards the point —b. See figure 2.10.
The region D corresponc to a randomizing region. One possibility is for the
system to randomly jump to some location whenever it finds itself unable to make
progress, that is, whenever the sensor returns a value within distance d from the
origin. Equivalently, the system could just move in a randomly chosen direction for
some duration of time. These motions should be so chosen that there is a non-zero
probability of entering either the region P or the goal G. For example, it may be




2.4. A RANDOMIZING EXAMPLE 77

P

Guaranteed convergence

positions
that yield useless sensor values
useless

sensor values

Figure 2.10: Range of positions and sensor values for which the system cannot decide
in which direction to move. In the region D the system cannot make progress towards
the goal. From the region P goal attainment is certain. From the region W progress
is possible but not immediate goal attainment.
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possible to randomly jump to some area A surrounding the goal, in which case the
probability of entering the region P is just the ratio of the areas, that is, [P N A|/|Al.
A typical execution trace of this strategy therefore consists of a series of straight-line
motions into the randomizing disk, each of which is followed by a random motion
out of the disk. Eventually one of these randomizing motions enters the preimage P,
whereupon entry into the goal is guaranteed. The expected time until success is on
the order of |A|/|P A} times the time required to execute a random motion. This
time may be on the order of the diameter of A.

An alternative to using random jumps or extended random motions whenever a
sensed value does not permit unambiguous progress towards the goal, is to execute
a short random motion. The model is to employ a simple feedback loop in which all
motions, both those executed deterministically and those executed randomly, are of a
fixed short duration. This view of randomization follows the simple guessing strategy
outlined in section 3.12.3. In the current context, the primitive actions are simply
motion directions executed for some fixed small interval of time. Guessing between
different knowledge states entails chaosing a randam motion direction. A simple
feedback strategy that does not retain history thus does not have the capability
of executing jumps or extended motions. Notice that this type of strategy has a
considerably different behavior than the preceding one. In particular, if the system
starts outside of the disk D. then it will head straight for the point —b, either attaining
the goal directly or entering the disk D. Once inside the disk D, the system will stray
about randomly in that disk. Essentially, the boundary of the disk forms a barrier
that is not crossed. This is because as soon as the system moves back out into region
W, it will encounter a sensed value that permits progress towards the goal, thus
sending the system right back into the disk. Thus, this strategy effectively amounts
to a random walk inside the disk D. The random walk eventually crosses over into
the goal G. whereupon the strategy terminates successfully. The expected time until
success is on the order of the non-goal area inside the disk, that is |D — G|, times
perhaps a logarithmic factor. depending on the location of the goal.!

We thus have two randomized strategies, of apparently different character.
Certainly the random jumps appear to be of significantly different character than
the short random motions. However, one can view a random jump as a strategy that
randomly guesses the current state of the system then executes a motion designed
to attain the goal assuming the guess is correct. Similarly, one can model the
extended random motions as sequences of actions acting over short periods of time.
The sequence may be viewed as the execution of a strategy with history, based on
a randomly selected start region. In this manner, these randomizations fit nicely
into the framework developed for the discrete case in chapter 3. In summary, one
randomized strategy tries to escape the region D, in which sensing is useless, by
randomly moving to a new start location, while the other strategy tries to escape this
region by drifting across it towards the goal. The first may be viewed as randomization

'This is similar to the expected time of n? log n required to attain the origin on a two-dimensional
n x n grid. See [Montroll].
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with history, the second as randomization within a simple feedback loop.

Deciding which strategy to execute depends very much on the capabilities available
to the system, as well as the expected times of success. For instance, if the preimage
P is large compared to the area A into which the system jumps randomly and if
the goal G area is small relative to the disk D, then it makes sense to randomize by
jumping. Otherwise, it may make sense to randomize by performing a random walk.

An observation in favor of the random walk is the realization that for more general
sensing and control uncertainties, there may not be a region P from which entry into
the goal is guaranteed. In particular, the region of useless sensing may include the
goal. This might happen if the actual bias has a magnitude considerably less than the
maximum possible magnitude. In that case, even though the strategy can guarantee
progress towards the goal whenever the system is far enough away, eventually, as the
svstem approaches the goal, sensing becomes useless. and guaranteed progress must
give way to random motions. In that case, both random jumps and random walks
succeed only by actually attaining the goal.

What is interesting about this example is that both these randomized strategies
succeed independent of the actual bias b. In fact, the same strategies will succeed
independent of the distribution of actual sensor values in the ball B,,(x). The speed
of convergence of course depends on the precise distribution but the existence of a
solution does not. With slight modifications the strategies can be made to succeed in
the presence of certain forms of control uncertainty as well.

This strategy i1s an example of the form to be discussed in section 3.12.4. In
particular, the strategy takes advantage of the lack of an adversary who can forever
keep the system from attaining the goal. This is evident in the assumption of a
constant sensing bias. The bias plays the role of an unmodelled system parameter that
cannot assume worst-case values at every location in state space. For the case b = by,
and d = (/e? — r?, this assumption ensures that for some approach direction there
will be a guaranteed path to the goal. While this approach direction is not known
to the system, the randomized motions ensure that it will be discovered eventually.
More generally, there may not be a region of guaranteed success. In this case, the
random walk ensures thai the goal will be attained eventually. (N.B.: Implicit in this
strategy is the assumption that there is no adversary who can bias the commanded
motions sufficiently that they act in a non-random fashion, driving the system away
from the goal.)

We will analyze the random-walk strategy again in chapter 5, and augment
the strategy to account for control uncertainty. Further, assuming particularly
nice distributions of sensing and control uncertainty, we will compute the expected
progress at each point. The rest of this chapter will focus more on the manner in
which both guaranteed and randomized strategies are computed in continuous cases.
It is hoped that the example has provided a flavor of the approach.
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Figure 2.11: Given perfect sensing and control, a strategy for attaining the goal is
simply a path to the goal.

2.5 Simple Feedback Loops

T'he main focus of this thesis is to develop an understanding of randomized strategies.
This will be done both in the setting of full history and in the setting of simple
feedback loops. Section 2.3.4 (page 73) explained the basic approach for planning
randomized strategies that use fuli history, with further details appearing in chapter
3. This section is devoted to a quick overview of simple feedback loops with
randomization. These were discussed ‘n section 2.3.3. The region-attaining example
of section 2.4 made use of a simple feedback loop. The basic structure of a simple
feedback loop 1s well described by that example. In particular. a randomized simple
feedback loop executes actions designed to make progress towards a goal when this
1s possible. and otherwise executes a random motion. The simple ieedback loop
only consults current sensed values in making its decisions. Again. chapters 3 and 3
examine feedback loops in greater detail.

2.5.1 Feedback and Uncertainty
Feedback in a Perfect World

The example of section 2.4 provided some of the motivation and the basic approach.
Let us now develop these ideas slightly further, as a prelude to chapter 3. Consider
first the setting of perfect . .rol and perfect sensing. In such a perfect world a
strategy for attaining a goal might consist of a series of paths that lead from any
initial state to the goal. See figure 2.11. One might for instance take the paths to
be the shortest paths to the goal. Sensing is not really required except perhaps to
determnine the starting location of the system.

Feedback with Imperfect Control

As one relaxes the assurnption of perfect control. sensing becomes useful for correcting
errors introduced during a motion. Again. a planner may specifv a strategy that
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Figure 2.12: This figure shows a snapshot of a feedback strategy in which control is
imperfect but sensing is perfect. At each instant the system determines a path to the
goal from the current state.

consists of a collection of paths that lead to the goal. Sensing is used at run-time
to determine which path the system is actually on at any instant. See figure 2.12.
One now has a true feedback strategv. At each instant of time the sensed state of
the system is used to decide on a proper course of action. The feedback strategy is a
simple feedback strategy since it does not make use of past sensed values.

Observe that we have said nothing about how one actually comes by the paths that
lead to the goal. In the perfect-world case these might come from a standard motion
planner. or perhaps a shortest-path planner. In the perfect-sensing/imperfect-control
woud. one can use these same paths. In other words, the strategies determined for the
perfect world may be used as nominal plans in the imperfect world. While it is true
that one might be able to optimize the time to attain the goal by explicitly replanning,
using for instance dynamic programming, this is not generally required merely to
obtain a solution. Under simple bounds on the extent of the control uncertainty, and
simple conditions on the paths. these nominal plans suffice to guarantee attainment
of the goal. The conditions may be summarized by saying that the nominal paths
should form a progress measure and that the control uncertainty should be small
enough so that progress is possible at any state of the system. By a progress measure
we essentially mean a scalar function that is continuous over the state space and that
is reduced as one moves along any given path. Distance from the goal is one such
measure. See also the work by [Khatib] on potential functions.

Feedback with Imperfect Control and Imperfect Sensing

Finally. let us relax the assumption of perfect sensing. We would like to extend the
feedback approach outlined above. In particular, we would like to begin with a set of
nominal paths or plans that lead from any location to the goal. The nominal paths
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serve as a guide. At run-time the system repeatedly uses sensing to determine its
actual location on one of these paths, thereby compensating for errors introduced
by control uncertainty. This is a classic view of feedback. However, the presence
of sensing uncertainty severely complicates the picture. The system now cannot
ascertain precisely on which path it is located. Instead, there may be a collection of
paths that are candidates for guiding the system to the goal. This collection is given
by all paths that intersect the sensory interpretation set. So long as all these paths
point in essentially the same direction, the system can find a motion direction which is
guaranteed to make progress relative to the paths. However, it may easily be the case
that some paths point in conflicting directions, so that the system cannot ensure that
it will reduce its distance to the goal. This was the gist of the example of section 2.4.
At this point randomization enters into the picture. If the system cannot guarantee
progress relative to the nominal paths, then it should simply execute 2 randomizing
motion. This ensures that there is at least a possibility of making progress, no matter
where the actual location of the system is within the sensing uncertainty ball.

In short, we will think of a simple feedback loop as a feedback strategy that
uses a progress measure to move towards the goal. The run-time knowledge state
of the system is just its current sensory interpretation set. Whenever progress is
possible for all states of the system within this knowledge state, the system executes
a motion to make progress. Otherwise, the system executes a randomizing motion.
Randomization is required to ensure uliimate goal attainment. This type of a
randomized strategy is perhaps the simplest sensor-based strategy imaginable. It is a
natural generalization of the feedback strategies used with perfect sensing. Strategies
that employ history in making decisions are conceptually built on top of these simple
strategies. In particular, randomization serves essentially the same role in all of these
strategies, namely as a device to continue operation even when decisions cannot be
made with certainty. It is merely that with the history-based strategies the effective
state of the system is complicated by the influence of past information.

2.5.2 Progress in Feedback Loops
The Feedback Loop

The basic structure of a randomized simple feedback loop is given by the following
pseudo-routine. The routine assumes that there is a non-negative scalar progress
measure ¢(z). defined at each point of the state space. that is zero at the goal. The
function £ is often referred to as a labelling in the rest of the thesis. In general.
additional conditions may need to be imposed on £, such as continuity, and the
absence of local minima. Recall also that F4(z) is the set of all states to which z
might move under action A.
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REPEAT until goal attainment:

Sense z*.

Let I(z*) be the possible locations of the system.

FOR all actions A dao
For z € I(z*), let A(z) = maxyer,(z) {€(¥)} — {(z).
If A(z) <0 for all z € I(z*),
then execute action A and exit from the FOR loop.
End for

If no action A was executed,
then randomly select an action to execute.

End_repeat

Pseudo-code describing a simple feedback loop.

The inner FOR loop checks whether it is possible to make progress relative to
the progress measure. If this is not possible, then a random action is executed. This
feedback loop assumes that goal attainment is recognizable upon entry into the goal.

Velocity of Approach

The synthesis of these feedback loops is trivial assuming that a pregress measure is
given. Let us therefore turn to an analysis of such loops. The key issue is deciding
how fast progress is made towards the goal. Thus it is useful to define the velocity
of approach at each state of the system. Intuitively, we would like the velocity v, to
measure the rate at which progress is made whenever the system is in state . We
must be careful to define this quantity in a meaningful manner. The proper definition
depends very much on the types of sensing uncertainty and control uncertainty that
are in effect.

In a world with perfect control and perfect sensing, the velocity of approach is just
the change in the progress measure, measured along the path to iiic goal. The velocity
is negative whenever progress is being made. This velocity has a useful property. In
particular, one can integrate the quantity —1/v, over a path to the goal in order to
obtain the time required to attain the goal. This means that if for some v the velocity
at each state z satisfies v, < v < 0, then the time to attain the goal is bounded by
—d/v, where d is the maximum starting distance from the goal. We would like our
more general definition to possess this same property.

Much of the material in sections 3.4, 3.5, and 3.6 is concerned with defining
velocity properly and establishing the bounding property just mentioned. There is
a considerable difference between the probabilistic setting and the non-deterministic
setting.




84 CHAPTER 2. THESIS OVERVIEW AND TECHNICAL TOOLS

In the non-deterministic setting the natural definition of the velocity v, is as the
worst-case bound on the change in the progress measure whenever the system is in
state z. In particular, the velocity at a state z is of the form:

v: = max max {f{y)— )]
= applicable yeFA(x){ ) ( /1
actions A

where £ is the progress measure as before. In order for this velocity to be negative,
each of the terms inside the maximization must be negative. This says that the
feedback loop is effectively a guaranteed strategy for attaining the goal. Given that
the progress measure ¢ is based on a collection of nominal plans developed for a
perfect world, one cannot actually expect that the velocities {v,} will all be negative.
This suggests that the natural setting for simple feedback loops is in the probabilistic
domain. rather that in the non-deterministic domain. Indeed in the probabilistic
domain the definition of velocity leads to some interesting issues.

Random Walks

The natural domain for exploring simple feedback loops with probabilistic uncertainty
is in the setting of Markov chains and their continuous counterparts. This is because
for each state of the system. the simple feedback loop described above defines a range
of probabilistic transitions. Each transition is the result of some action that the simple
feedback loop might execute. An action is executed either as a result of obtaining a
sensory value that permits making progress, or as a result of randomly selecting an
action. Since sensing and control uncertainty are probabilistic, the net result is a set
of probabilistic transitions.

As an example, consider again a two-dimensional peg-in-hole task for which the
peg 1s in contact with a horizontal edge near the hole. Suppose that we have
discretized the state space, as indicated in figure 2.13. In a perfect world, once
the peg is in contact with a horizontal edge, a plan for attaining the goal consists
of moving left if the peg is to the right of the hole, and moving right if the peg is
to the left of the hole. There are thus two nominal paths for moving towards the
goal. Said differently, a progress measure is given by the system’s distance from the
goal. Let us ignore the issue of control uncertainty and instead assume simply that
the peg's motions consist of moving to neighbor states in the discrete representation
of its state space. Now let us instantiate the simple feedback loop for this problem
in the presence of sensing uncertainty. The feedback loop is based on the distance
progress measure. *

2We should note in passing that the strategy is slightly silly, given the low-dimensionality of the
state space. However, it is a convenient example for illustrating the construction and character of a
simple feedback loop. A more complicated example was considered in section 2.4.
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Figure 2.13: Discrete approximation of the horizontal state space of a peg-in-hole
problem. State “0” corresponds to the goal.

1. Sense the current horizontal position.

!\D

Decide on a direction in which to move:

(a) If the sensed value unambiguously determines the peg’s
position to be to the left of the hole, then decide to move
right.

b) If the sensed value unambiguously determines the peg's
g8 g
position to be to the right of the hole, then decide to move
left.

(¢) Otherwise, randomly pick left or right.

3. Move one step in the direction selected by the previous step, while
simultaneously pushing down slightly.

4. Repeat steps 1 through 3 until the goal is achieved.

A simple feedback loop for inserting the peg of figure 2.13.

Let us analyze this strategy. Suppose that the sensor is symmetric. Then it
suflices to consider the distance of the peg from the origin. Denote by a the distance
of the peg’s reference point from the origin. Let p, be the probability that the sensor
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Figure 2.14: A Markov chain model for the discrete peg-in-hole problem of figure
2.13.

will return an unambiguous reading when the peg is located at distance a from the
hole. By an unambiguous sensor reading we mean a sensed value z* all of whose
interpretations [(r") lie either completely to the left or completely to the right of the
hole. Then the probability of moving towards the hole is

_ 1 1 __l 1
Phole(a)—[)a+§( —Pa)—§+§Pa-

Figure 2.14 shows the resulting system, modelled as a simple Markov chain. [Here
p(2) is shorthand for pro(2), and g(i) = 1 — p(7).]

The precisc value of p, and thus of p,.(a) depends on the senser, of course.
Observe, however. that ppo(a) > 1/2 whenever p, > 0. In short, there is a natural
drift towards the origin. Indeed. the expected change in the distance from the origin
is given by:

Aa = (_1)phole(a)+(+l)(l —phole(a))
= —2phue(a) +1
= —Pa

In other words, on average, the system decreases its distance from the goal by p,
per step. It thus makes sense to define the velocity at the point a to be v, = —p,.

We see in this example one of the key issues that arises in the analysis of
randomized strat~zies, in particular, of simple feedback loops. This is the question of
whether sensing is strong enough to pull the system towards the goal on average. In
this one-dimensional example we see that the natural drift is indeed towards the goal
everywhere. In more complicated spaces this need not always be the case. Part
of chapter 5 is devoted towards analyzing one such example, based on the two-
dimensional problem of section 2.4. We will see that for nicely behaved sensing
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and velocity errors, there is an unbounded annulus about the origin within which the
system moves towards the origin on average. However, once the system lies within a
certain distance of the origin, the sensing information becomes less useful. Instead,
the randomizing actions tend to push the system outward. Although eventually the
system will approach arbitrarily closely to the origin, the natural drift is away from
the origin on the average. This places a lower bound on the size of the goal region
required to ensure fast convergence.

More generally, one can define the expected velocity at a state to be the expe-ted
change in the progress measure. A considerable portion of chapter 3 is devoted to
proving that this definition of velocity in the probabilistic setting has many of the
same properties as does the usual notion of velocity in a deterministic world. In
particular if the expected velocity at every state is bounded from above by some
number v < 0, then the expected time to attain the goal is bounded from above by
—d/v, where d is the maximum starting distance from the goal.

An attractive aspect of the probabilistic definition of velocity is that it captures
the notion of progress on the average. In order to converge to a goal rapidly a strategy
thus need not make progress at every instant in time, so long as it makes progress on
the average. This is a considerably more flexible definition than what is available in a
non-deterministic world. This is because in a non-deterministic world all constraints
are formulated in terms of worst-case behavior. One desirable trait of randomization
in general is that it permits one to mix the notions of worst-case and average-case
behaviors. Thus even in an adversarial world one can sometimes gain an advantage by
purposefully randomizing one’s actions. This is the idea put forth in section 2.4. Even
though one may not be able to ensure progress on any given attempt, by randomizing
one can at Jeast ensure progress eventually, and in some cases, one can ensure progress
on the average.

2.6 Strategies Revisited

We saw in section 2.2 that there are essentially four dimensions that define the types
of tasks that arise in robot motion planning with uncertainty. It is easy to confuse
the methods for these different problems, so let us recall the four dimensions briefly.

One dimension corresponds to the levei of uncertainty in the actions.
The categories of action uncertainty that we discussed were: DETERMINISTIC,
PROBABILISTIC, PARTIALLY ADVERSARIAL, and NON-DETERMINISTIC. A second
dimension corresponds to the level of uncertainty in sensing. The categories of
sensing uncertainty that we discussed were: PERFECT, PROBABILISTIC, PARTIALLY
ADVERSARIAL, NON-DETERMINISTIC, NEARLY-SENSORLESS, and SENSORLESS. A
third dimension coiresponds to the type of strategy used to solve the task. The
two (ategories that we discussed were GUARANTEED and RANDOMIZED. Finally,
the fourth dimension corresponds to the amount of history used by these strategies
in making their decisions. The two extremes that we discussed were given by
FuLL HISTORY and SIMPLE FEEDBACK. In some sense there is a fifth dimension,
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corresponding to the type of state space, but we will ignore this dimension in the
current categorization since most of the results generalize from the discrete case to
the continuous setting.

Focusing for the moment on the two dimensions of strategy type and history usage,
the following table describes the contribution of this thesis.

Strategy Type
Guaranteed Randomized
None LMT Thesis
Full | LMT; DP Thesis

History

Focus of the thesis.

The entry “LMT; DP” refers to the work by [LMT] on preimages and the general
dynamic programming approach for planning guaranteed or optimal strategies. See
chapter 4 for a discussion of preimages in the continuous domain and chapter 3 for a
discussion of dynamic programming in the discrete domain.

This thesis does not discuss much the synthesis of guaranteed strategies that use
no history. In general, simple feedback loops are best thought of in the probabilistic
or randomized domains, since they are generally not guaranteed to converge in a
predetermined number of steps. However, some work has been done in this area in
the context of robot motion planning. Clearly, guaranteed strategies that use no
history may be viewed as a special case of preimage planning [LMT]. Other special
cases and extensions are discussed in [Erd84], {Buc|, and [Don89], among others.

Turning to the dimensions of control and sensing uncertainty, the following table
describes the the types of tasks considered either directl; or indirectly by this thesis.
Essentiallv, the ratural approach is to pair up non-deterministic control with non-
deterministic sensing, and probabilistic control with probabilistic sensing. Entries
with a *y/” refer to task specifications that are special cases of either the general
preimage framework or the material discussed in this thesis. Entries that specify
section or chapter numbers refer to material treated in detail in the thesis.

Control (Action) Uncertainty
Perfect Probabilistic Non-Deterministic
Perfect Vv Vv Vv
Sensing Prob'abilistic ‘ Vv 83.4; §3.5; §5 -
Uncertainty Partially Ad.ve'rs:.a.nal §2.4 85 §2.4 ; §3.124
Non-Deterministic Vv — §3.6-§3.11; §4
Near-Sensorless Vv N4 §3.13
Sensorless Vv Vv §3.13

Descriptions of tasks considered by this thesis.

One issue that these tables do not highlight is the relationship of non-deterministic
models to probabilistic models. In some cases the world may behave probabilistically,
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even though the model is non-deterministic. Section 5.2 treats this topic briefly.
The topic arises naturally in the analysis of strategies formulated in terms of the
non-deterministic model. A guaranteed or randomized strategy that assumes a non-
deterministic description of uncertainty is certain to succeed independent of the actual
instantiation of errors. However, in ord~r to perform a specific rather than a worst-
case performance analysis, it is often useful to assume a particular instantiation of
the sensing and control errors, such as assuming some probabilistic model. For those
cases it is important to understand the relationship between the worst-case model and
the probabilistic model. Indeed, most of chapter 5 is concerned with the analysis of a
simple randomized strategy, modelled after the example of section 2.4. The strategy
is general enough to succeed under a variety of worst-case scenarios. In order to gain
some appreciation for the behavior of the strategy, however, it is useful to assume a
pair of idealized probabilistic distributions describing the sensing and control errors.

2.7 Summary

This chapter has briefly outlined the basic focus of the thesis. The chapter defined
different types of uncertainty, and different approaches for planning strategies that
solve tasks in the presence of uncertainty. The focus of the thesis is on randomized
strategies, with a particular emphasis on simple feedback loops. A simple feedback
loop only considers current sensory information in deciding on a course of action.
Randomized simple feedback loops expect as input a progress measure, perhaps in the
form of a nominal plan for attaining the goal. The randomized feedback loop attempts
at each instant to move in a manner that makes progress. If this is not possible, then
the system makes a random motion. The chapter included an example consisting of
a randomized strategy for pushing a peg on a surface into a two-dimensional hole.

More generally, randomization is useful because it permits solutions to tasks for
which there are no guaranteed solutions, because it simplifies the planning process,
and because it reduces brittleness. Brittleness is reduced because randomization
can blur the significance of environmental details. Rather than requiring a detailed
analysis of an environment, a system can instead rely on randomization to effectively
ignore details below a certain scale.
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Chapter 3

Randomization in Discrete Spaces

This chapter examines the role of randomized strategies in the solution of tasks that
may be represented by a set of discrete states and actions. The chapter will also
indicate how to plan strategies, with an emphasis on finding strategies that may be
planned and executed quickly. In particular, it will be shown that there are some
tasks for which randomized solutions execute more quickly on the average than do
guaranteed solutions in the worst case. In general, of course, a given task may not
have a guaranteed solution. but we will see that under verv simple conditions there
is always a randomized solution to a task specified on a discrete space. However, the
expected execution time may be very high.

3.1 Chapter Overview

This first section provides a brief guide to the organization of this chapter.

Basic Definitions

The first main section (§3.2) presents a more detailed version of the basic definitions
of chapter 2, specialized to tasks on discrete spaces. The section begins with the
definition of tasks in the non-deterministic setting, then moves on to the probabilistic
domain. Next the section considers the problem of planning guaranteed or optimal
strategies in the probabilistic setting. In particular, the Dynamic Programming
Approach is reviewed. This planning approach applies with slight variations to
the non-deterministic setting as well. Finally, the section ends with some technical
subsections that elaborate on the definition of knowledge states and a connectivity
assumption. Knowledge states reflect the uncertainty with which a system knows its
location at run-time. The connectivity assumption rules out consideration of tasks in
which massive failure can occur.
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Random Walks

As we noted in chapter 2, random walks form one of the most basic type of randomized
strategies. In particular, the results developed in the context of random walks are
basic to the understanding of simple feedback loops. Section 3.4 considers random
walks. and section 3.5 introduces the notion of expected progress. This second section
defines the expected velocity at a state relative to a labelling of the state space. The
section proceeds to show that this notion of an expected velocity possesses some of the
standard properties of a deterministic velocity. In particular, if the expected velocity
at all states points towards the goal and is uniformly bounded away from zero, then
an upper bound for the time to attain the goal is given by the distance from the goal
divided by the velocity bound.

Planning with Randomization

Sections 3.6 through 3.11 consider the general problem of planning strategies
that purposefully randomize. This planning approach is built on the dynamic
programming approach used for generating guaranteed strategies.

Extensions and Specializations

The remaining sections discuss various extensions and specializations of randomized
strategies. Of particular interest are near-sensorless tasks. In these tasks the system
must relv almost entirely on its predictive ability to attain a goal. The only sensing
information available is whether or not the goal has been attained. By including this
one bit of information it is possible to develop randomized strategies structured as
loops that repeatedly attempt to attain the goal.

3.2 Basic Definitions

This section presents the basic definitions of actions, sensors, and tasks on discrete
spaces. Section 2.2 already explained some of these concepts. The current section
elaborates on more of the technical details. The presentation of these definitions is
in the context of both non-deterministic and probabilistic actions and sensors. The
basic approach is the same for both types of uncertainty. Subtle differences between
the non-deterministic and probabilistic cases are mentioned as necessary.

3.2.1 Discrete Tasks

We should convince ourselves that there are tasks that may be represented in discrcte
terms. Recall that some examples were given in chapter 2, in particular in section
2.2.1. A typical such task is given by the stable configurations under gravity of a
polyhedral object resting on a planar surface. Indeed, if one drops a polyhedral
object onto a horizontal table under the influence of gravity, with probability one it
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will come to rest on one of the faces comprising the convex hull of the object. There are
finitely many such faces. Thus, although the natural configuration space of the object
is a six-dimensional space consisting of the three translational and three rotational
degrees of freedom of the object, if the task only requires examination of the object’s
stable resting configurations, then the induced state space is finite. Determiuing the
transitions between these stable states may require a dynamical analysis in the full
six-dimensional (or higher) state space of the object, but once that analysis has been
performed, the planning of operations can occur in the finite and discrete state space.

Even though the state space may be discrete it may not be immediately apparent
that the set of transitions between the states is finite. Although there actually may
be a continuum of actions, im many cases there is a natural partitioning of this
continuum into a finite collection of equivalence classes, where each action in an
equivalence class has the same effect in terms of the transitions on the underlying
state space. For instance. if we are interested in the stable resting configurations of
an object on a table. we may alter those resting configurations by exerting a force
on the object through its center of mass. In that case, we can partition the space of
forces into regions whose qualitative behavior differs across regions but is identical
within a region. For instance, forces that point into the friction cone, thus causing no
motion, constitute one region. Other regions might include those forces that cause
sliding. and those that cause the object to flip from one stable configuration to one
or more other stable configurations.

The representation of tasks is a difficult issue. In some cases, problems that
appear to reside in a continuum state space, may be transformed into equivalent or
similar problenus that reside in finite state spaces. The details of the transformation
tend to be task-specific. although often stability under some set of actions may be
used as a criterion in defining the discrete states. The work of Brost ([Brost83] and
[Brost86]) involves such a transformation for the problem of pushing and grasping
planar polygonal objects. Mani and Wilson [MW] used a similar transformation
in their work on pushing. and Erdmann and Mason [EM] employed a stable-under-
gravity transformation in their work on orienting planar parts in a tray.

A slightly different type of transformation is given by the examples of gear-meshing
and object-sieving cited in Chapter 1. Here in some sense there are two states,
namely SUCCESS and FAILURE. A complicated higher-dimensional analysis was used
to determine the effect of a particular action, that is, to compute the probability of
success in each example. However, once that probability had been computed, the
task couid be represented by a discrete state space, with a probabilistic transition
graph. Certainly, more complex graphs can be envisioned, especially for the sieve-
task. in which one could imagine a series of sieves arranged verticaliy ab-ve each
other. In that case a natural discrete graph is given by states corresponding to the
regions between the different sieve levels. Assuming that one does indeed randomize
the object’s configuration hetween sieves, there is no need to accurately model this
configuration, and it becomes sufficient to collapse all configurations between two
sieves into a single state. Of course, if one is interested in synthesizing strategies by
varying the possible motions through the sieves, then one may have to return to the
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full two-dimensional continuum configuration space of the part being moved. Again,
this may not. be such a problem, if one decides to limit the possible scts of motions
to a finite class, either by only considering finitely many or by partitioning them into
equivalence classes relative to some relation.

3.2.2 Discrete Representation

This section provides the formal representation of tasks in which the relevant state
space and action set are discrete and finite. The development will assume non-
deterministic actions and sensors. More specialized actions and sensors, such as
probabilistic ones. are discussed in chapter 2. Additionally, sections 3.2.3 and 3.2.4
discuss probabilistic actions, sensing, and planning.

States
In a discrete problem we are given a finite set of states S = {sg.51.52,---.5,}, and a
finite set of actions A = {4, A,, -, An}. In principle, one could define several sets

of actions. each set representing the actions that are applicable at a particular state.
However, we will simply assume ihal every action is applicable at every state. This
is an unrestrictive assumption that simplifies the notation in discussing the effects of
actions when the current state is unknown.

Actions

The actions are non-deterministic, that is, given some starting state s. the result
of applying an action A may be any one of a possible set of states Fu(s) =
{si,,85.- .5, € S. This set is called the forward projection of the state s
under action A. Figure 3.1 shows how we will represent non-deterministic actions
graphically. In the figure, action A; may have one of three results when applied to
state sg, but has precisely one result when applied to states s;, s;, or s3. Symbolically,
we would write this as:

Ay Sorr 81,82,83
51 — 51
Sz 8

S3 —  S3.

Section 2.2.2 contained some examples of non-deterministic actions.

As another example of a non-deterministic action, consider an Allen wrench in
contact with a tabletop, as shown in the top portion of figure 3.2. Suppose a force
is applied through the center of mass as shown. Depending upon the coefficient of
friction, the accuracy of the applied force, the position of the center of mass, and so
forth, there are two possible final stable states of the Allen wrench. These are shown
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Ay
Ay
8 > A,
Ay
L |

Figure 3.1: Graphical representation of a non-deterministic action A;.

in .ower portion of figure 3.2. If the parameters determining the motion of the wrench
cannot be modelled accurately, for instance if the coefficient of friction is unknown.
then the action should be modelled non-deterministically.

Tasks

We will assume that tasks are specified as goal states that should be achieved. That
1s. there is some set G C S of states, whose attainment constitutes completion of the
task. By attainment, we will mean recognizable attainment, that is, the system is in
a goal state and knows that it is in a goal state.

Similarly, the system is assumed to initially start in some subset T C S of states.

Sensors

Finally, we should comment on sensors. Sensors may or may not be available. We shall
model a sensor as a relation between states and subsets of states. In other words,
given that the system is in some state, the sensor returns some subset of possible
interpretaticns. See section 2.2.3 for a description of possible types of sensors and
sensory interpretations. In general, the sensor need not be deterministic, that is, for
a given state, the sensor may return one of several possible sets of interpretations.
However. we will assume that there exists at least one possible interpretation set for
any given state. This assumption is always easily satisfied, since one can if necessary
take this interpretation set to be the entire state space. See also section 3.2.5 below.
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/Center of Mass
Applied Force

Resulting Non-Deterministic

Transition
%/ M/
Assuming low friction Assumiug large friction

Figure 3.2: The force applied to the Allen wrench in the top of the figure will cause
the wrench either to slide without rotation or to rotate and possibly slide. The actuat
motion depends on the coefficient of friction. If the coefficient of friction is not known
it is useful to model the force as a non-deterministic action.
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Functional Representation

If we wanted to express actions and sensors as functions, then the proper encoding
would be:

IfA€ A then A:S — 25,

where S is the set of states and 2° is the set of all subsets of S. Similarly, we can
model the sensor function as a mapping = from states to all sets of subsets of states:

(3.1) =:8 - 2%,

[n other words. for any state s, =(s) is a collection of sets, say =(s) = {I;,---, I,}.
We will refer and have been referring to each I; as a sensory interpretation set. =(s)
describes all possible sensory interpretation sets that might arise at run-time whenever
the system is in state s. This means that at run-time the physical sensor can return
some value whose interpretation is one of the subsets I; of the state space.

For a perfect sensor, the sensing function becomes Z(s) = {{s}}, for every s € S.
Abusing notation we will sometimes write this as =(s) = s. On the other extreme.
if no sensor is available. then = reduces to =Z(s) = {S} for every s € S. Again,
abusing notation we will sometimes write this as =(s) = S. See section 2.2.3 for some
examples of sensing uncertainty.

These representations are intended only to describe the character of the range of
actions and sensors. In other words, actions map to sets of states, whiie sensors can
return any one of a collection of sets of states. Particularly in the case of sensors the
representation (3.1) is much too general. We will impose additional constraints on
this representation in order to derive a physically reasonable model in our discussion
on knowledge states below (see section 3.2.5).

Two comments should be made. First, sometimes it is useful to break the sensor
function into two parts. The first part models the sensor values that may result upon
examination of the sensor when the system is in a particular state. We will denote
a possible such sensor value by s*. The second part models the interpretations of
these sensor values as sets of states. In particular, if s* is an observed sensor value,
then I(s*) will denote its set of interpretations. See, for instance, [TMG]. Often the
second of these functions follows from the first, so we have decided to collapse the
representation. However, for some of the examples 1n the thesis, when we derive the
sensory interpretation sets possible at a given state, we niay first determine the actual
values {s*} returned by a physical sensor, then map these to their interpretation sets
{I{(s*)}. In any event, no serious information is lost by mapping directly from states
to possibie inierpretation sets.

The second comment concerns the doinain »f the sensor function, which was taken
to be the state space. Sometimes a sensor’s value may depend on a sequence of states,
or on some other parameter, rather than on just the current state. This is particularly
true in thc ceatinuous timee case, whers o ghyeical sensor may be averaging noisy
measurements over time before reporting these to the control system. In the discrete
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case this seems less likely, and so is not modelled here. Further, any dependence on
an unmodelled parameter can always be collapsed into further non-determinism in
the function =. This conservatively preserves the sensor’s response, although it may
weaken the power of the executive system in making decisions. Another approach
is to augment the definition of the system’s state in order to incorporate the sensor
state.

Notice that further variations on this model are possible. For instance, the effect
of actions could be made time-dependent, as could the results returned by the sensors.
We will not consider such variations.

3.2.3 Markov Decision Processes
Non-Determinism and Knowledge Paucity

We have thus far chosen to represent transitions as non-deterministic transitions.
This reflects the presence of uncertainty in the actions we are modelling. This mcdel
does not incorporate any further knowledge about the nature of the uncertainty in
the actions.

In some cases the uncertainty may be due to a paucity of knowledge in modelling
the acticns on the state space. rather than an inherent non-determinism in the actions
themselves. For instance. it may turn out in figure 3.1 that action A, actually always
moves from state sg to state s;, but this is simply not known to the task-svstem.

Probabilistic Actions and Optimality

In other situations one may have enough information to think of the transitions
between states as being probabilistic. In other words, associated with each action and
each start state is a distribution function, describing the probabilities of attaining the
states in the forward projection Fj4 of the start state. If actions may be described
using probabilistic transitions, then it is natural to formulate optimality problems in
terms of expected cost for some cost function defined on the states and the transitions
between them. A typical problem is to find the sequence of actions that attains a
goal state in minimum expected time. Such problems are known as Markov Decision
Processes, and have been studied for scveral decades. Recent results by [Pap] and
[PT] have characterized these problem in terms of PSPACE. In particular, the general
problem of finding the minimum expected cost sequence of actions of a given length
is shown to bc PSPACE-hard. Various specializations of the problem are actually
in PSPACE. Of particular interest are the perfect-sensing and no-sensing cases. The
latter problem is shown te he NP complet:, whila the foriper is shown Lo be -
compiete. A standard approach for computing optimal decisions in the perfect-sensing
case 1s to use dynamic programming (see, for example, [Bert)).
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Probabilistic Sensors

Note that sensing may also be formulated probabilistically. There are at least two
natural ways of doing this. In our current representation, if the system is in state s,
then Z(s) is a collection of sets. This means that at execution time the sensor can
return any one of the sets in =(s). Eacli set is a sensor interpretation describing the
possible states of the system. One possibility for a probabilistic tensor would be to
define a probability distribution over this collection of sets. In other words, for each
state of the system, the sensor has a certain probability of returning any given set of
interpretations. Another possibility is to not model = as returning different possible
sets of states, but to instead model = as returning different possible probability
distributions. In other words, for each state of the system s, Z(s) is a collection
of probability distributions over the state space. One can merge these two variations
by assigning probabilities to each of the probability distributions in the collection
=(s). Indeed. this is often the approach taken. For instance, if we have a Gaussian
sensor. then. for each state of the system, we can associate a probability density to
the possible sensor values. And by inverting these distributions using a Bayesian
approach, we can think of each sensor value as defining a probability distribution on
the state space. See also section 3.2.6.

3.2.4 Dynamic Programming Example

This section reviews and demonstrates the use ot dynamic programming by a
simple example. The main reason for reviewing dynamic programming is its use of
backchaining, a method that is useful for computing guaranteed plans in the presence
of uncertainty. We will state the example in a probabilistic setting. However, it should
be understood that the same approach apolies to planning guaranteed strategies in the
presence of non-determunistic uncertaiaty. We briefly indicate the planning process
in the non-deterministic case.

A Probabilistic Example

The example consists of a series of states connected by actions that have probabilistic
transitions (see figure 3.3). After any transition, sensors report the resulting state
with complete accuracy. The starting state can also be sensed with perfect accuracy.
The task is to determine a mapping from knowledge states to actions that maximizes
the probability of attaining the goal in a specific number of steps. This mapping
constitutes a plan or a strategy for attaining the goal. Knowledge states are discussed
further in sections 2.3.3 and 3.2.5. Intuitively, a knowledge state describes the
system’s current best estimate of a region in which it is located. A knowledge state is
determined by current and past sensory information, as well as by predictions based
on executed actions. With perfect sensing, the relevant knowledge states are simply
the actual states of the system.

The basic idea of dynamic progranuning is to maximize (or minimize) some value
function in te:ms of the actions available and the number of steps remaining to be
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1 1 1
T i e

Ay

Figure 3.3: A state graph with probabilistic transitions. There are four states and
three actions. The label on an arc indicates the probability that the transition will
be taken when the specified action is executed. All transitions not indicated are
self-transitions.

executed. At each stage, an action is selected for each statc that wauld maximize
the value function given that there remain a certain number of steps to be executed.
This maximization is performed by first recursively determining the maximum values
obtainable for each state given one fewer step, then selecting an action for the current
state that maximizes the expected value of moving to another state. One starts the
whole process off by assigning values to each state that reflect the value of the value
function if no actions whatsoever remain to be executed. This is exactly what it means
to backchain from a goal. For the situation in which one is looking for strategies
with maximal probability of success, the value function represents the probability of
achieving the goal in the remaining steps. Goal states are initially assigned a value of
1: non-goal states a value of 0. Further, the value in the k** siage of the computation
for a particular state is the probability of attaining the goal from that state in at most
k steps, assuming that the system can sense perfectly and that it always executes the
maximizing action at each state.

The backchaining maximization of dynamic programming may be depicted by
a table (see below). The columns of the table correspond to the stages in the
backchaining process; the rows correspond to the knowledge states of the execution
system. Counting from right to left, an entry in the k'* column of the table for
knowledge state A specifies the action to be taken at run time if there remain &
time-steps in which to execute actions and if the system’s current knowledge state is
K;. The entry in the table might also specify the value of the value function computed
at that point in the backchaining process. For instance, the entry might specify the
maximal probability of success given that there remain k actions to execute and given
that the system is in snme state s;.
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Consider now figure 3.3, which depicts four states and three actions. The
transitions resulting from the execution of actions are labelled with probabilities.
All actions are applicable in all states. However, for simplicity, we have not drawn
transitions that leave a state unchanged. For instance. if the current state is state s,,
then action A, moves to state s4 with probability 1/10, while action A; remains in
state s, with probability 1.

Suppose that state s4 is the goal state. Then the value assigned to the four states
at the zeroth stage of backchaining is 0 for states s;, s2, and s3, and 1 for state s4.
At the first stage, the values assigned are 1/4 for state s;, 1/10 for state s;, and 1
for states s3 and s4. These values reflect the maximum probabilities of attaining the
goal in one or zero steps.

The following table reflects the computations for four stages. The entries in the
table are the computed maximum probabilities, along with the correct action to take
in that state, given the number of steps remaining. In this example. the optimal
actions for each of the states happen to be the same across stages, but that need not
be the case in general.

Steps Remaining
3 2 1 0
1.4, 11/20; A, 1/4; 4, O S
I; A, 1; A; 1/10; A, O sy | States
1: Ay 15 A 1, As 0 s3
{ Li stop 1. stop 1; stop 1; stop | s4

Probabilities of success: Optimal actions.

The table shows that the goal can be achieved with certainty from any state using
no more than three steps, as one would expect.

Complexity

Computing such a table out to k stages for a state space with n states and O(m)
actions can be done straightforwardly in time O(k m n?). In particular, the solution is
in P (polynomial time). [In this complexity estimate we are ignoring the precision of
the transition probabilities, that is, we are assuming that addition and multiplication
can be done in constant time.]

A Non-Deterministic Example

For completeness of exposition suppose that the transition graph of figure 3.3 is
non-deterministic rather than probabilistic. In this case the value function to be
maximized by the dynamic programming approach is a boolean function. A “1” of
this function corresponds to guaranteed success, while a “0” corresponds to possible
failture. The dynamic programming table for the non-deterministic case is almost
identical in appearance to the table for the probabilistic case. A blank entry in the
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table indicates that success cannot be guaranteed in the number of steps remaining
from that state. In other words, the boolean value function has value “0”. Conversely,
an entry with an action A; indicates that the boolean value function has value “17,
that is, eventual goal attainment is guaranteed if the system executes aciion A;.

Again, the table shows that the goal can be achieved with certainty in at most
three steps.

Steps Remaining
3 2 1 0

Al 31
A2 A'z 87 States
A3 .43 A3 83

stop stop stop stop | sq4

Actions that guarantee goal attainment.

3.2.5 Knowledge States in the Non-Deterministic Setting

This and the next section explain how to represent the possible states of a system at
execution time, that is, what the executive's knowledge states are. A planner must
of course reason about more knowledge states than actually occur during execution.
since in gcneral at planning time the outcome of a sensing operation will not be known
precisely.

Forward Projection

First, let us look at the case in which actions are non-deterministic and sensors return
possible sets of interpretations. In this case, at any given time during execution the
actual state of the system is known only to be one of possibly many. Thus the space
of knowledge states is simply the set of all subsets of the state space, namely 2°.
Given a set A, of possible states that the system could be in, and an action A, the
result of executing action A is a new knowledge state K,, given by:

Ky = {J Fa(s).
s€K,

In other words, A’ is the union of all the possible non-deterministic transitions
resulting from possible states in A’y. Notice that this knowledge is equivalent both
at execution time and at planning time. The process of forming K is called forward
projecting set K, under action A, and is written K; = F4(K,).

Forward projections possess a nice property. The forward projection of a collection
of sets is just the union of the forward projections of the individual sets. This is
summarized in the following lemma.

Lemma 3.1 Let {K;} be a collection of knowledge states, and let A be a non-
deterministic action. Then
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f‘A (U 1\}) = U FA(I\',).
Proof. Clear from the definition. [}

Sensing

Let us now turn to the procedure by which a run-time executive might update
its knowledge state using sensing. Given a knowledge state K; and a sensory
interpretation set I. the resulting knowledge state is K, = K, I. For sensing.
however. knowledge at execution time can be considerably different than at planning
time: at execution time the set I is known, whereas at planning time the system only
knows that [ will come from one of several possible sets of interpretations.

See again figure 2.6 on page 71. which shows the process of forward projecting
a knowledge state and intersecting the forward projection with the current sensory
interpretation set.

The analogue to the distributive property of forward projections is given for
sensory interpretation sets by the distributive property of set intersections.

Lemma 3.2 Let {K,} be a collection of knowledge states, and let [ be some sensory
interpretation set. Then

(U 1\'.) N1 =UKNOD.

Proof. Clear. |

In the next few paragraphs we will augment the process by which a system updates
its knowledge state using sensory information. Indeed it is sometimes useful to make
use of more structure than that provided simply by intersectiug the current knowledge
state with the current sensory inte pretation set.

Constraints on Sensors

We will make one further set of assumptions concerning the possible sensory
interpretations. The purpose of these assumptions is to rule out inconsistencies
that would be possible given the unrestrictive definition of the sensing function =
in equation (3.1).

Consider figure 3.4. The figure shows the system’s current knowledge state A
which includes the actual state of the system z. The sensed value is z*, and the
sensory interpretation set I(z") is given by a disk centered at z*. Unfortunately this
disk does not overlap the knowledge state. Thus if the system updates its knowledge
state by computing K () /(z"), the result will be the empty set. The problem here is
that the sensory interpretation set does not include the actual state of the system.
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Figure 3.4: The sensory interpretation set in this figure does not overlap the system’s
previous knowledge state. This implies an inconsistency. The actual state of the

system s I.

This leads to our first restriction on the definition of the sensing function =. We
require that a sensory interpretation set always include the actual state of the system.!

Partial Sensing Consistency Requirement. Let s be a system state. and le
I € Z{s) be a possible sensory interpretation set retuined by the sensor when the
system is in state s. We require that s € I. This means simply that a state is always
an interpretation of any sensor value to which it can give rise.

Inconsistent Knowledpge States

The example of figure 3.4 introduced the notion of a sensory interpretation set that
is inconsistent wi*h the current knowledge state. For the example of the figure, the
inconsistency is removed by the partial sensing consistency requirement. This is
because the knowledge state K contains the actual state of the system. However. if
the run-time executive's knowledge state does not contain the system’s actual state.
then it is still possible to obtain a sensory interpretation set that does not overlap

'In the probabilistic case, it is sometimes useful to relax this requiremcat. In particular, when
sensory interpretations are density functions with infinite tails it is useful to insist merely that
the sensory interpretation set cover the actual slawe of the the system with some sufficiently high
probability. We will make use tacitly of this version of the partial sensing consistency requirement
in chapter 5. See .n particular section 5.2.
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the executive's run-time knowledge state.

Tl.ere is a subtle issue here that requires rurther explanation. In particular, why
should a system’s knowledge state not contain the actual state of the system? This
may seem peculiar, since the knowledge state is intended to reflect the certainty with
which the system knows its actual state. If the knowledge state does not contaiu
the system’s actual state then something must Le wrong in the modelling of the
information available to the system, either in the modelling of the actions or in the
modelling of the sensors. This means that if ever the system encounters the empty
set upon having updated its knowledge state, then the system knows immediately
that something is wrong in the modelling of the task. In turn, this suggests that we
need not worry about inconsistent interpretations, since if an inconsistency ever does
occur, it must he due to an unmodelled parameter, that is, an event bevond the scope
of the task description. The smart thing to do is to stcp the task execution and to
trv to model ti.e unknown parameter.

This explanation is correct, but it ignores part of the motivation for the thesis.
In particular. we would lixe to develop methods for solving tasks without having full
knowledge of all the parameters in the system. The particular approach taken in
this thesis is to actively randomize, either by guessing sensor values or by executing
random actions. The randomization is intended to blur the significance of thece
unmodelled parameters. Formally, as we indicaied in section 2.3.4 on page 73. one
view of randumization is as the random guessing of possible knowledge states. In
other words, the actual knowledge state of the svstem is too large for it to execute
a useful strategy. so the system simply guesses that its actual state lies in a smaller
set. The smaller set is then assumed to be the knowledge state. Actions and sensing
update this smaller knowledge set. rather than some larger knowledge state, as if it
were the correct description of the run-time executive’s certainty. This approach will
be further explored starting in section 3.9.

We sce then that the set A () I(z”) readily can be empty, where I(z") is some
sensory interpretation set and K is a knowledge state. This is because the knowledge
state A may have been randor:ly selected during a guessing step of a randormuzed
strategy. This is actually very useful. For, if the run-time execut:.e ever observes
that A’ /(z*) = 0. then it knows that the actual state of the system cannot be in
K. This implies that the original guess of K as an appropriate knowledge state must
have been wrong. Having determined that the guess was wrong, the system can then
guess again, or try some other strategy.

*Interpreting Sensors More Carefully

This section may be skipped on a first reading. It deals wit a technical point
regarding the consistency of the sensing function =.

Thus far we have only imposed one restriction on the character of sensory
interpretations. namely the partial sensing consistency requirement. This restriction
mercly insured consistency between the actual state of the system and observed
sensory interpretation,. The requirement may be interpreted as ensuring that sensory
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interpretation sets are not too small. However, thus far we have not imposed a
constraint in the other direction, to ensure that sensory interpretation sets are not
too large.

If sensory interpretation sets are larger than necessary, then it may be to
a strategy’s advantage to perform a more complicated operation than merely
intersecting the sensory interpretation set with the current knowledge state. The
next few paragraphs indicate what is meant by a sensory interpretation set that is
too large and how a system can better update its knowledge state. Fortunately, it is
possible simply to modify the sensory interpretation sets prior to execution time so
that they are not too large. This modification will be formulated in terms of a second
consistency requirement.

A fairly natural way in which sensory interpretation sets may be too large is if
thev are chosen conservatively to bound the actual state of the system. For instance.
consider figure 3.5.

This is an example on a continuous space, but the moral of the example applies
equally well of course to discrete spaces. In this two-dimensional example the
sensing error ball has a radius varying as a function of the system’s z-coordinate.
In particular. if the actual state of the system is (z.y). then the range of possible
sensor values 1s given by a circle centered at (z,y) with radius z/4. This example
is supposed to abstract the notion of a position-dependent error function. Suppose
that the work space is given by the square [0,1] x [0,1]. If (z*.y") is an observed
senscr value, then one mayv take as the sensory interpretation set I{z*,y*) the circle
of radius 1/4 centered at (z*,y"). Clearly this interpretation set is too large for small
values of z. but it is definitely « conservative approximation. and satisfies the partial
sensing consistency requirement.

Now consider the example of figure 3.6. There are two knowledge states, given by
the two vertical strips Ay = {{r.y) |0 < 2<04}and K, = {{z,y) |0.7<z <1}
Let the observed sensor value be (z*,y*) = (0.6,0.5), with corresponding sensory
interpretation set [(r®,y") = B,/4(0.6,0.5). Clearly this sensory interpretation set
overlaps each of the knowledge states A} and K,. If a system simply intersects
sensory interpretation sets with knowledge states, then the system would conclude
that its location could be either in the set K, or the set K;. On the other hand it
is clear to us as outside observers that no point in K; could have given rise to the
sensor value (0.6.0.5). This is because the maximum range of possible sensor values
for a point (z,y) € K, is a disk of radius 0.1. This means that the maximum possible
r°-value observable if the system is in A’y is 0.5. Only system states in the set K
could give rise to the observed sensor value (0.6,0.5). However, again, not all of the
system states in the intersection K, I(z",y") could give rise to the observed sensor
value (r",y*). In short, even the intersection of the sensory interpretation set with
K, 1s an overestimate.

The previous example is not surprising. After all, having conservatively bounded
the actual sensory internretation sets, one would expect that the run-time knowledge
states computed by the system might overestimate uncertainty. The question is
whether the structure of the function = is internally consistent {see definition below).
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Possible sensor values at x = x,
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Figure 3.5: The sensing error ball in this example is position dependent. If the actual
state of the system is (z, y), the possible sensor values are given by a ball of radius
z/4 centered at (r,y). Over the indicated workspace a conservative approximation
to the sensory interpretation set for an observed sensory value (z*,%") is given by a
ball of radius 1/4.
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Figure 3.6: The sensing error ball about the sensed value (z*,y*) = (0.6,0.5) overlaps
both knowledge sets K; and K;. However, the observed sensor value can only
correspond to an actual system state in the set K;. This is because the range of
sensor values for points in K has a maximum radius of 0.1. The position-dependent
possible sensor values are described in figure 3.5.
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In particular, let us consider the collection of interpretation sets =(s) for some state
s = (z,y). This collection might be of the form

(32) E(:c,y) = U {31/4(3:'53!-)}’

i(z*y*)=(zy)I<z/4

or it might be of the form

(3.3) E(.’c,y) = U {31/4(.1', y.)}':

|(z,-"y‘)-(::,y)|<l/4

to name two extremes. The first collection (3.2) consists of all balls of radius 1/4
whose centers (z*,y*) lie within distance z/4 of the actual state of the system. In
other words, this collection correctly models the actual sensor values that the system
might observe, but then conservatively bounds the interpretations of these sensor
values. The second collection (3.3) consists of all balls of radius 1/4 whose centers
(z*,y") lie within distance 1/4 of the actual state of the system. In other words, this
collection not only conservatively bounds the interpretations, but also conservatively
assumes that a greater range of sensor values is possible than the system will actually
observe.

If the sensor function = is of the form given by (3.2), then the system can obtain
additional information by investigating the function = that it cannot obtain simply
by intersecting sensory interpretation sets with knowledge states. In particular, if
the sensing function is of the form (3.2), then the system can rule out interpretations
in the set K of figure 3.6, while retaining some or all of the interpretations in the
set K,. On the other hand, if the sensing function = is of the form given by (3.3),
then the system can do no better than to intersect sensory interpretation sets with
knowledge states.

Definition. In some sense the sensing function given by (3.3) is internally
consistent. By this we mean that the system cannot gain any extra information
by explicitly examining the structure of the sensing function, as by examining the
collections =(s) for all states s. Instead, all the information upon observing a given
sensor value s* is available in the interpretation set I(s*).

In contrast, the sensing function given by (3.2) is not internally consistent. There
are two basic ways to make this function internally consistent. One is to modify the
collections =(s) so that they conservatively bound the range of possible sensor values
as in (3.3). The other is to modify the actual interpretation sets so that they are
exact rather than conservative bounds.

One question of interest is how a system should update its knowledge state if the
sensing function Z is not necessarily internally consistent. Suppose, in particular, that
the system’s current knowledge state is K; and that it has observed a sensor value with
interpretation set /. Let us define an operation ()’ that updates the knowledge state
K using both the sensory interpretation set / and information about the structure
of the function =. We want the updated knowledge state K to consist of all states in




110 CHAPTER 3. RANDOMIZATION IN DISCRETE SPACES

both K and I that could have given rise to the sensory interpretation set /. Formally,
K, = KNI, where

(3.4) KNI={se kKNI |I€Z(s)}.

This expression provides a formula for ensuring that the sensing function = is
internally consistent. Expression (3.4) says that one should delete from a sensory
interpretation set [ any states that could not possibly give rise to I.

We can summarize the condition that a sensing function be internally consistent
by imposing an additional consistency requirement. The purpose of this requirement
is to capture the condition under which the operator (Y reduces to the operator .
Combining this condition with the partial sensing consistency requirement yields the
following consistency requirement.

Full Sensing Consistency Requirement. Let = be a sensing function on a state
space S. Denote by =(S) the set of all possible sensory interpretation sets, that
is, Z(S) = Uses =(s). We say that a sensing function satisfies the full sensing
consistency requirement if the following condition holds for ali states s € S:

I € =(s) if and only if s € I and I € =(S5).

In other words. if a state can give rise to a sensory interpretation set then that
interpretation set must include the state itself, and conversely. It was the converse
requirement that was missing in the example of figure 3.6. It makes a lot of sense to
impose the partial sensing consistency requirement, as sensors that do not satisfy it
do not seem very useful. Once one has the partial consistency requirement, it is easy
enough to impose the full consistency requirement. After all, suppose that one sees
a sensory interpretation set [ which nominally contains the state s. If one examines
=(s) and discovers that I ¢ =(s) then one knows that s could not possibly have given
rise to /. Thus one may as well replace I with I — {s}. This was the gist of the
operation [ defined by (3.4) above.

For the sake of comnpleteness we prove the following lemma, which establishes that
N and N’ really are the same operator when the full sensing consistency requirement

holds.

Lemma 3.3 Suppose = is a sensing function on a state space S that satisfies the full
sensing consistency requirement. Then (Y = (.

Proof. Let K C S be a knowledge state, and let /] € Z=(S) be a sensory
interpretation set. We need to show that KNI = K (Y I. By the definition (3.4),
we see that K()'I C KN I. Thus we need only to establish the reverse inclusion.
Suppose that s € KNI. In particular s € I. By the full sensing consistency
requirement it follows that / € =(s). The definition (3.4) then establishes that
s€ K1, as desired. [
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To summarize, the full sensing consistency requirement ensures that the sensory
interpretation sets are neither too small nor too large. This means that all the
information available to the system from the sensing function is contained in the
individual sensory interpreiation sets. This is clearly a desirable property. In
particular, it permits the system to update knowledge states with sensory information
using set intersections.

3.2.6 Knowledge States in the Probabilistic Setting

Next, let us consider the case in which all actions are probabilistic and in which
sensory interpretations are also probabilistic. Specifically, let us assume that for a
given action A, if the system is in state s; then it will move to state s; with probability
pi;- The matrix (p;;) is known as a probability transition matriz. Similarly, a sensory
interpretation is really a conditional distribution vector (¢;). This says that if the
system was thought to be in state s; with probability p; before the sensory operation,
then after the sensory operation it is thought to be in state s; with probability p; ¢;/¢,
where ¢ is a normalization factor required to ensure that the resulting prebabilities
form a true distribution (see below). [As this expression indicates, the numbers {¢;}
are usually determined by a Bayesian analysis of how different states can give rise to
different sensor readings.]

In the probabilistic setting, the state of the system is known with some probability.
Thus the natural knowledge states are probability distributions over the state space
S. In other words, a knowledge state is a collection of |S| non-negative numbers that

add up to one. If the current knowledge state is K; = {po, p1, - -, Pn}, and action A
has probability transition matrix (p;;), then the effect of applying action A is a new
knowledge state K, = {qo, ¢1, -, gn}, where
n
¢ = D P;Psi-
=0

This is just a probabilistic forward projection. The sum is similar to a union operation;
it measures the probability of moving to state s; from each state s; in the system,
multiplied by the probability of having actually started in that state.

As we have already indicated, a sensory interpretation I corresponding to some
observed sensor value s* is of the form

I = (toytry.neytn)-
Here ¢; is the conditional probability of observing s* given that the state of the
system is s;. The sensory interpretation I changes a knowledge state from K; =
{po. Pty -+ Pn} to K2 = {poto/t, Prta/t, - -+, Pnta/¢}. This is just the probabilistic
equivalent of set intersections in the non-deterministic case. Note that

L= Zp,'l,j.

=0
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3.2.7 Connectivity Assumption

We would like to make a connectivity assumption that ensures that the goal is
reachable from each possible state of the system. In the probabilistic setting this
assumption amounts tc the condition that for each start state there is a sequence
of arcs with non-zero tramsition probabilities that attains the goal. ln the non-
deterministic case the assumption amounts to the condition that even in a worst-case
scenario there is always some sequence of arcs that leads from each state to the goal.

The purpose of this connectivity assumption is to rule out massive disasters from
which recovery is impossible. In other words, there are no non-goal trap states or trap
subsecs. An example of a trap is a snap-fit. Other examples include orienting parts
over a deep lake or walking in a tiger-filled jungle. Generally, in the domain of tasks
involving the manipulation or assembly of rigid objects, the connectivity assumption
will be met so long as one can apply arbitrary forces and torques on the objects being
manipulated.

The reason for ruling out such massive failures is to prevent randomized strategies
irom failing irrecoverably. In a more general setting in which certain parts of the state
space must be avoided at all costs, one must restrict randomization to the safe part
of the state space. If this is not possible, then randomization should not be applied.

Probabilistic Setting

In the case that actions are specified as probabilistic transitions, the connectivity
assumption amounts to verifying that the transitive closure of each state in the
induced transition graph contains a goal state. The transitive closure of a state
in a directed graph is the set of all states reachable from that state by some path. By
the induced transition graph we mean the directed graph whose vertex set is the set
S of underlving states. and whose directed arcs are given by the set of all transition
arcs whose associated probabilities are non-zero. This set is computed by considering
the set A of all possible actions.

Non-Deterministic Setting

In the situation that actions are specified as non-deterministic transitions, we need
a stronger condition than for the probabilistic case. In the probabilistic case we
essentially verify the possibility of moving from any state to a goal by looking for
some sequence of transitions connecting the state to tne goal. Since each arc has a
positive probability of being executed, the sequence as a whole has positive probability
of being executed, so it is possible to reach the goal from the given state. In the non-
deterministic case, such a test is not sufficient. This is because some arcs appear
in the diagram simply due to a paucity of knowledge in modelling the underlying
physical process. There is no guarantee that the arcs will ever be traversed. [See also
the section on adversaries (§1.3)].

In order to understand the difference between the non-deterministic and the
probabilistic case consider figure 3.7. In both Part A and Part B, if one interprets
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Part B

OF=:
@2

(%)

Figure 3.7: Both tasks satisfy the connectivity assumption whenever the arcs have
positive probabilities of being executed. However, only the task of Part B satisfies
the connectivity assumption if the arcs are interpreted as wors.-case non-deterministic
transitions.
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all the arcs as probabilistic arcs with positive transition probabilities then the task
satisfies the connectivity assumption. In other words, from any state there is a
sequence of transitions that attains the goal with non-zero probability. However,
if we interpret the arcs as worst-case transitions, then only the task of Part B satisfies
the connectivity assumption. In Part A, from a worst-case point of view, there is a
possibility that the system will forever loop between states s; and sj3.

Let us formalize the connectivity assumption. As we stated on page 112, even
in the worst case there should for each state exist a sequence of actions that leads
to the goal. Recall that a non-deterministic action A can cause a given state s to
transit non-deterministically to any one of a set of states {s;,---,sx}. There is no
further information in the model, and one must thus be prepared that any one of the
transitions can occur. That is what is meant by a worst-case model. We will refer to
an instantiation of such a non-deterministic transition as a particular choice s;. In
other words, on a particular execution of action A while the system is in state s, the
result is instantiated as state s;. By an instantiation of all possible actions we mean
a choice s, for all actions A € A at all possible states s € S. An instantiation of all
possible actions yields a directed graph whose vertex set is S and whose arcs are the
directed arcs defined by the instantiation. We will refer to a particular such graph
as an instantiated transition graph. Figure 3.8 shows the four instantiated transition
graphs that are possible by instantiating in all possible ways the non-deterministic
actions of the graph in Part A of figure 3.7. Notice that for cne of the graphs, two
states are disconnected from the goal. Tkis says that in a worst-case scenario it
might not be possible tc reach the goal. As we shall see, this also says that there is
ne perfect-sensing strategy for attaining the goal from an arbitrary state.

Definition. We will say that it is certainly possible to reach a set of goal states G
from a given state s if for any instantiated transition graph there is some path that
leads from the state s to some goal state in G.

This definition captures the notion that no matter how the world behaves within
the non-determinism allowed by the specified actions, there is some path for attaining
the goal. The definition says nothing about whether the system can actually compute
that path or execute it. After all, the system is not necessarily aware of the actu:l
instantiations of the actions it executes. The connectivity assumption merely says
that it is “certainly possible” to attain the goal, that is, that no adversary can prevent
it for certain.

Looking ahead slightly, this connectivity assumption facilitates the use of
randomized strategies. This is becaise a system can randomly guess what the
instantiated graph looks like. Having made its guess, the system can execute a
sequence of actions that follows a path to the goal. If the system guessed correctly,
then these actions attain the goal. Otherwise, the system fails to attain the goal, but
can try again. The connectivity assumption ensures that on each guess there is a
non-zero probability of guessing correctly, uniformly bounded away from zero. Thus,
eventually, the system will guess correctly.
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Figure 3.8: These four instantiated transition graphs describe the different possible
worst-case scenarios for the task of Part A of figure 3.7. The absence of a path to
the goal for states s; and s; in the fourth graph indicates that it is not “certainly
possible” to reach the goal from an arbitrary state in the state space.
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In fact, it turns out that the connectivity assumption in the non-deterministic
setting is equivalent to the existence of a guaranteed perfect-sensing strategy. This
is proved below. Furthermore, the perfect-sensing strategy need not have more steps
than there are states.

Connectivity Tests

Thus in both cases we have a simple test for verifying goal connectivity. In the
probabilistic case the test involves computing transitive closures. In the non-
deterministic case the test consists of searching for a perfect-sensing strategy. This
may be done quickly, using dynamic programming, as explained in section 3.2.4.
Notice that the probabilistic test need not yield an optimal strategy, and the non-
deterministic test need not yield a guaranteed strategy for an arbitrary sensing
function. The probabilistic test merely yields some strategy, while the non-
deterministic test yields a guaranteed strategy given a perfect sensor. The tests,
and hence the assumption, are definitely weaker than the general planning problem
itself.

Goal Reachability and Perfect Sensing

And now the two claims. The first establishes the equivalence between goal
reachability and perfect-sensing strategies, the second shows that a guaranteed
strategy under perfect sensing requires few steps.

Claim 3.4 Let (S, A,=,G) be a discrete planning problem, where S is the set of
states. A is the set of actions, = is the sensing function, and G is the set of goal
states.

It is “certainly possible™ to reach G from any state s € S if and only if there ezists
a guaranteed perfect-sensing strategy for attaining G from any state s € S.

Proof. First, suppose that there exists a perfect-sensing strategy that is guaranteed
to move the system from any state s to some goal state. Then for any instantiated
transition graph there must be a path from s to G. This path may be determined by
executing the perfect-sensing strategy while selecting action transitions as prescribed
by the instantiated transition graph.

Conversely, suppose that for any instantiated transition graph and any state s € S
there is a path from s to G. We would like to exhibit a perfect-sensing strategy for
attaining the goal G from any state s € S.

We will construct a collection of sets of states Sy, ...S,, for some ¢ < |S |. The
intuition behind these sets is that a state is in S; if there exists a perfect-sensing
strategy for attaining the goal in at most i steps, and if there is some possible
instantiated transition graph for which ¢ steps are actually required. We will not
actually require this property in the current proof. However it provides the proper
intuition, and it will reappear in the proofs of claims 3.5 and 3.12.
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Define Sy to be the goal set G. Clearly there is a perfect-sensing strategy that
attains a goal state from any state in Sp, requiring zero steps. Suppose that S; has
been defined, and that there exists a perfect-sensing strategy defined on the union

% o Si. The perfect-sensing strategy is assumed to attain a goal state from any state
in the union without ever passing through any state in the complement S — Jf_, S;.
Define S ; to be the set of all states in this complement for which there exists some
action that attains a state in [J{_, S; in a single step. In other words,

k
Fu(s) € |J S: for some action 4 = A(s)}.
=0

k
Sk+1={S€S—US,'

1=0

We need to show that Sy, is not empty, unless S = Uf=0 S;. Once we establish
this, then the existence of a perfect-sensing strategy on the union U5} S; will be
clear. In particular, this new perfect-sensing strategy is an extended version of the
previous strategy. It executes the same actions as before for states in U, S,. while
executing the actions A(s) for each s € Siyy. Clearly this strategy attains a goal
state from any state in the union ! S; without ever passing through states in the
complement of this union.

Furthermore. since each set S, is non-empty, there can be at most |S| of them.

Now let us show that Sk4 is indeed non-empty. Let us write Cx = S — U, S..
Suppose that Si,; = 0. but that C, # 0. This says that for every state s € C; and
every action A, the intersection of the forward projection F4(s) with C; is non-empty.
Said differently, for each state s € Ci, and each action A, there is an instantiation
that causes s to traverse to a state in Cx. This means that there is an instantiated
transition graph for which the set C; is completely disconnected from the goal. That
violates the assumption of the claim. and thus we see that Spy; # 0. |

The next claim establishes that a perfect-sensing strategy for attaining a goal need
not be very long. The claim actually follows from the proof of the previous claim.
However, for completeness we will prove it independently.

Claim 3.5 Let (S.A,=,G) be a discrete planning problem, with = being a perfect-
sensing function. Suppose that there ezists a guaranteed strategy for moving from some
start state s to the goal set G. Then this strategy requires no more than r = {S| — |G|
steps.

Proof. This is a standard finite automaton argument. Suppose that more than
r steps are required. Consider a possible trace of states that occur as the strategy
is executed. This trace must then contain a subsequence of non-goal states in which
the first and last state are the same state, say state 3. Let A; be the action executed
when the system is first in state 3, and let action A, be the action executed when the
system encounters state 5 at the end of this subsequence. Since sensing is perfect.
the strategy will continue to be successful if action A, is replaced by action A,. This
change removes the subsequence from the trace, thus shortening this particular trace
by at least one step. Repeatedly applying this procedure to all possible traces shows
that the strategy need not require more than r steps.
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3.3 Perspective

We noted in section 3.2.3 that the general problem of planning optimal strategies on
discrete spaces is very hard computationally. This suggests several different directions
to take. One is to give up the notion of optimality. Another is to examine special
cases, and to try to understand the characteristics that permit fast solutions. The
next few sections will address these issues in the probabiiistic setting.

Finally, as indicated earlier, for many problems the action transitions are not
probabilistic but rather non-deterministic. In these situations, the Markov Decision
model is not directlv applicable. The approach for several years has been to
compute what are often known as guaranteed strategies. These are strategies that are
guaranteed to attain 2 goal state in a fixed number of steps, despite uncertainty. The
strategies are computed by backchaining. In the perfect-sensing case, this amounts to
using dynamic programming, with a value function that can only take on the boolean
values 0 and 1. However, not all problems admit to guaranteed solutions. The latter
sections of the chapter will look at how randomization may be used to solve some of
these problems.

3.4 One-Dimensional Random Walk

In studying randomized strategies on discrete spaces, it is worthwhile to start by
considering some very simple prublems, such as the one-dimensional random walk. It
turns out that the insight into convergence speeds that one gains from looking at a
one-dimensional setting carries over to some extent into the general setting.

3.4.1 Two-State Task

The simplest possible non-trivial example is given by a system consisting of two
states, with a probabilistic transition between these states. This was essentially
the representation in ihe gear-meshing and parts-sieving examples earlier. For
completeness, let us quickly review the results of the earlier discussion. Let us say
that one of the states is the start state, and the other is the goal state, and that
sensing 1s perfect. This means that whenever the system is in a state s, the sensor
accurately reports that the system is in state s. It the probability of transiting from
the start state to the goal state is p, then the expected time until the goal is attained
is 1/p. Indeed. this is a classic waiting time problem: the probability that the goal is
attained on the k** try is pg*~!, where ¢ = 1—p. In particular, for fixed p, convergence
is exponentially fast in the number of tries. {This is also known as linear convergence
or geometric convergence, since the ratio of successive error terms is bounded by a
constant less than one.]

A slightly more complicated problem is given if the sensing function is not perfect.
Different variations are possible. On. possibility is that sometimes the sensor will
correctly register the state of the system, while at other times the sensor cannot
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Figure 3.9: A two state Markov chain with probabilistic transitions. The chain
represents an approximation to the gear-meshing and sievirg examples of section
1.2, given that the action to be executed is fixed.

distinguish between the two states. If p,.n,. is the probability of recognizing that
the system is in the goal. then the probability of entering and recognizing entry into
the goal is P Pyense, assuming independence between the actions and the sensors. This
raises the expected execution time by at most a factor of 1/p,ense- Another possibility
is that the sensing function can never distinguish hetween the start and the goal when
the system is at the goal. In this case one cannot guarantee that the goal will be
attained. but one may be able to say something about the probability of attaining
the goal in a specific number of steps.

At issue is what happens to the system if ii is in the goal and one executes the
action designed to move to the goal. Specifically, one is interested whether the system
stays in the goal or whether it can jamp back out of the goal. In the gear-meshing
example the question amounts to deciding whether spinning the gears when they are
meshed can cause them to disengage In the sieving example, the question amounts to
deciding whether shaking the system after the object has fallen through the sieve can
cause it *2 jump back up above the sieve. See figure 3.9 for a probabilistic description.
The probability of moving out of the goal is given by u. This is zero if the system
remains forever in the goal under the action A, and non-zero otherwise.

The ideal situation is that u is zero, in other words. that the goal is not ever exited
once attained. In this case, as we mentioned above, the probability of nou attaining
the goal in k attempts is ¢*, where ¢ = 1 — p is the probability that the system
stays in the start state when action A is cxecuted. So, if one wants the prebability of
failure to be less than some constant €, then one should choose & to be bigger than
log ¢,/log q.

The worst case occurs when u is one, that is, when the goal is immediately exited
after having been entered. Define p; to be the probability that the system is in the
goal on the k** try, and g, to be the probability that the system is not in the goal.
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Then the following system of equations holds:

dk+1 = qqr + Pr,
Prky1 T P4k,

with boundary conditions

q0=1, P0=0

Since gk + px = 1. we see that the strategy which attains the goal with highest
probability consists of a single attempt. In order to sec this, notice that p, = 0 and
that p; = p. Observe further that p, > 0 for all £ > 0. Thus ¢, < 1 for all &£ > 0.
This in turn says that py < p for all £ > 1. In other words, after the first trial the
probability of success decreases.

If one does repeatedly try to attain the goal. so that k becomes very large, then
gk and p, approach a limiting distribution. namely

I—

&% =15
= 2
Pk 1+p°

Let us briefly consider the general case. All this material is standard in the theory
of Markov chains. See, for instance, {Fellerl] and [KT1] for further introductions.
Denote the start state as state 1 and the goal as state 2. Let P = (p;;) be the
probability transition matrix. where p,; is the probability of transiting from state ¢
to state j in a single step. We have that

P= (1 P P ) .
u l—-u

The k' power of this matrix, P* describes the k-step transition probabilities.
If the row vector my describes the initial probability distribution over the system
states, then x; = xy P* describes the resulting probability distribution after k steps.
In our case ¥y = (1,0), meaning that the system starts off in state 1. The theory
of Markov chains tells uz that as the number of steps gets large x, approaches a
limiting distribution x, which is a left eigenvector of the matrix P, with eigenvalue
1. Furthermore, under fairly simple conditions (such as non-periodicity), the chain
converges to this distribution at the rate A\¥, where ) is the largest eigenvalue whose
norm is less than one (all eigenvalues have norm no more than one). So convergence
is exponentially fast in the number of steps taken. It is clear that the vector
x = (u/(u+p),p/{u+p)) is a left eigenvector of the matrix P, with eigenvalue 1. Thus
x forms the limiting distribution as one repeatedly executes action A. Furthermore,
the eigenvalue other than 1 is A = 1 — p — u, and convergence occurs geometrically
fast, with A as base. Indeed, if we write the difference at any point in time between
the limiting distribution and the current distribution as e, = & — xx, then e, is of the
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form (e, —¢), for some € between —1 and 1. Furthermore, e;4; = e, P, by definition of
the limiting distribution. Performing this multiplication, we see that e,41 = A ey, as
one would hope. This also shows that the strategy which maximizes the probability
of attaining the goal, given that one starts out in the start state, is given by a single
application of action A. Further applications of A only reduce the probability of being
in the goal, from p eventually down to the stable distribution value of p/(u + p). Of
course, if one isn’t sure whether the system initially starts in the (so-called) start
state or in the goal state, then a single application of A may not be the right thing.

If we apply this analysis to the case that u is zero, we see that the system has
eigenvalues 1 and ¢, and a limiting distribution of # = (0,1). This says that the
goal is eventually attained, and that convergence is geometric with base ¢, agreeing
with our earlier calculations. In the case that u is one, the eigenvalues are 1 and
—p. Again, the limiting distribution is x = (1/(1 + p),p/(1 + p)), as we saw earlier,
and convergence to this distribution is geometric with base —p. The negative sign
indicates oscillatory behavior of the error vector.

For a given action we now have a means of computing the probability of winding
up in the goal on any given step. Or, more generally, without knowing anything
about the initial distribution that determines the state of the system, we can sav
that after sufficiently many applications of action A the system will attain a stable
distribution. In particular. after sufficiently many steps the goal will be attained with
probability close to p/(u + p). While this is a far cry from guaranteeing that the goal
will be attained, it is considerably hetter than claiming that the task is not doable
in the absence of a guaranteed strategy. In particular, if the goal represents the
preconditions to some other task. then one has a means of at least probabilistically
meeting those preconditions., and of passing on a probability of their having been
met to the next task. Said differently, one can think of the repeated execution of
action A as randomizing between two states, of which only one permits solution of
some additional task. With good sensing the randomization is not needed, but with
no sensing, the randomization offers a means of solving the task without knowing
whether the system first starts off in the goal or in the (so-called) start state.

Suppose that several different actions are possible. Then this analysis provides a
means for comparing the actions in terms of their probabilities of success or in terms
of their convergence times.

Furthermore, the approach just outlined applies to a general Markov chain. The
size of the matrices changes, but the comments regarding limiting distributions and
convergence times continue to hold. We can thus imagine analyzing and comparing
different strategies for solving a sensorless task formulated as a probabilistic problem
on a discrete state space.

3.4.2 Random Walks

In order to motivate the analysis of random walks, consider the task of moving a peg
into a hole. Suppose that we are interested in generating a simple feedback loop, that
senses the position of the peg relative to the hole, then moves the peg to decrease the
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Figure 3.10: This is a deterministic random walk. The system moves towards the left
one state during each time step.

distance from the hole. In the case of perfect control and perfect sensing, the peg will
always move towards the hole. However, if sensing and control are subject to error,
then the sensors may occasionally suggest the wrong direction in which to move,
and the motions executed may occasionally move in the wrong direction or perhaps
accidentally slide over the hole. Recall the physical peg-in-hole example of section
1.1 and the analysis of section 2.4. In other words, the motion at any point is not
guaranteed to move towards the hole, but has some chance of moving in a different
direction. This sets the stage naturally for processes that may be approximated by
random walks. These are in general multi-dimensional, but often it is enough to
consider some one-dimensional quantity, such as the distance of the peg from the
hole. A more direct example is given by a two-dimensional peg-in-hole problem, in
which the peg is moving on a one-dimensional edge near the mouth of the hole.

Another motivation for studying random walks is given by the sensorless tasks
discussed in section 1.4. Here the question may be one of choosing a sequence
of probabilistic actions that should attain some desired goal. The choice may be
deterministic, so that the random character of the system arises solely from the
probabilistic actions, or the choice of actions may itself involve random decisions
at execution time.

In summary. random walks on graphs arise naturally due to uncertain sensing,
uncertain control, and purposeful randomization. We are interested in this section
in determining convergence properties of one-dimensional random walks. An
understanding of these properties will aid in constructing strategies for more general
tasks.

Figure 3.10 shows a simple one-dimensional random walk. The state space consists
of a+1 states, labelled 0,1,...,a. The arrows emanating from each state indicate the
possible transitions out of that state at any given step of the process. The arrows are
labelled with the probability of their occurrence. State 0 is the goal. This is actually
a deterministic random walk: At each step, if the process is in state k, then it will
transit to state k — 1 with probability one. Once the process has entered state 0,
it remains there. In short, for this deterministic random walk the expected time to
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Figure 3.11: This is a random walk, in which the system moves left with probability
p, and sits still with probability ¢ =1 — p.

reach the goal from sta*¢ £ is just k. the distance to the origin. This is the type of
behavior one evpacts with perfect control or sensing.

A slighit variation is given by the random walk in figure 3.11. In this example the
trausition from state k to state k£ — 1 only has probability p, while with probability
g = 1 — p the process remains in state k. An example of such a process might be a
series of sieves stacked one above the other (recall section 1.2). Once the object has
passed through one sieve, it will not move back up, but it need not immediately pass
through the next sieve. Another example mentioned earlier was the task of closing a
desk drawer that is slightly wedged. In many cases it may be enough to keep trying
to push the drawer shut, without ever having to pull it out. The probability p models
the probability of selecting a pushing force that actually closes the drawer further.

The expected convergence time for the process is now k/p, if it initially starts in
state k. One sees therefore that the transition probability acts almost like a velocity.
In this example the velocity is p; in the previous example it was 1. Later we will
generalize this notion of velocity to a more encompassing setting.

One final comment concerns the search for paths to the goal. If one simply
employed a connectivity analysis, one would see that the goal is reachable from state
k by a sequence of length k. The probability that this precise sequence will actually
be executed is p*, which suggests horrible convergence times. Fortunately, however,
because progress along the chain cannot be arbitrarily undone, the actual convergence
times are much faster.

We will now derive the convergence times of a fairly general random-walk. For
the most part, we will follow [Fellerl] in this analysis (see in particular pp. 348-349),
although our boundary conditions are slightly different. As usual, transitions are
possible only to neighbor states, and we will assume that the probabilities are the
same for all interior states. In particular, p is the probability of moving left, and
q = 1 — p is the probability of moving right. We are not considering self-transition
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Figure 3.12: This is a random walk, in which the system moves left with probability
p, and right with probability ¢ = 1 —p. The random walk stops in state 0 and reflects
at state a.

probabilities. If these are included then the results are nearly identical. In the case
that p = ¢ the expected durations are scaled by 1/(p + ¢) from those given here. In
the asymmetric case, the results are identical to those given here, except that ¢ and
p no longer add to one. We assume further that the process stops in state 0, and
reflects at state a. In other words, instead of moving right with probability ¢ from
state a. the process simply stays in state a with probability ¢q. See figure 3.12.

Now let Dj be the expected time to reach the goal (state 0), given that the system
starts in state k, with 0 < k < a. Suppose the system starts in state k with k < a,
and consider the results of its first step. With probability p the system will move to
the left, at which point the remaining expected time is D,_,, and with probability ¢
the system moves to the right, whereupon the remaining expected time to reach the
goal is Di4y. This establishes the following difference equation.?

(3.5) Dy=qDiyy+pDi_q1 +1, 0<k<a,
with boundary conditions
(36) Do = 0, Da =q Da + pDa—l + 1.

Let us first suppose that p # ¢q. Then a general solution to equation (3.5) is given
by

k k
(3.7) D, = p— +A+B (g) , when p # ¢,

where A and B are arbitrary constants. In our case, these are determined by the
boundary conditions (3.6). In particular,

?These equations follow Feller, but with different boundary conditions.
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DO=0 = A+B=0,
and

Da qDa+pDa—l+l
= Da = Da—l+%1

which says that

a a-1
-1 1
: +A+B(’-’) = +A+B(3) + =
P—q q P—q q P

___a (4
b= (p—qV(P)’

from which we see that the solution to (3.5) and (3.6) is given by

k q q\° q AN
(3.8 D= % 4 (_) 9 (- |
) *Tr—q (-92\p (P—q)? \p
It is useful to rewrite this solution as
3.9 D, = + - 1—-1- .
(3.9) *Tr—q (p-97\»p q

Suppose now that p > ¢ (so, in some sense, the “natural drift” is towards the
origin). Then the factor 1 — (p/q)* is negative. So

It follows that

Dy < ——, 0<k<a,
p—4q
and we see that convergence is essentially linear in the distance from the origin. In
fact, if a is large and k < a, then Dy = k/(p — ¢q).
Now, suppose that ¢ > p, so the “natural drift” is away from the goal. This time
the factor 1 — (p/q)* is positive, and the factor (¢/p)® becomes significant. Indeed,
for large a (and moderate to large k), the expected durations are essentially

~_a  (g)
Der o m (p) '

In other words, convergence is exponential in the length of the random walk. For
small k, this time is reduced slightly, but it is still of the same order.

Finally, let us consider the case for which p = ¢ = 1/2. Then the general solution
to the difference equation (3.5) becomes
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Dk=—k2+A+Bk.

The first boundary condition implies that A is zero, while the second boundary
condition says that D, = D,_; + 2, from which we see that B = 2a + 1. So, the
complete solution is

Di=k(2a+1-k).

In other words, the convergence times are essentially quadratic. In particular, for
values of k£ comparable to the length of the chain a, the convergence times are
essentially a®, whereas for smaller values of k the convergence times are on the order
of ka.

These observations establish the following

Claim 3.6 Consider a random walk on the state space 0,1,...,a, with reflection at
a. Let p be the probability of moving left one unit, and let ¢ = 1 — p be the probability
of moving right one unit. Then the marimum ezpected time to attain the origin is
linear in a. quadratic in a, or ezxponential in a, depending on whether p > q, p = q,
or p < q, respectively.

Furthermore, for a fized starting location k, the ezpected time to attain the origin
from k approaches k/(p — q) as a — oo if p > q, and approaches infinity if p < q.

We see then that it is important for a random walk to drift in the correct direction.
If at each point in time the tendency is to move towards the goal, then the random
walk behaves very much like a deterministic process. Specifically, the expected time
to reach a goal is essentially the distance to the goal divided by the expected velocity
at which the process is moving. In the random walk case, the quantity p— ¢ measures
this expected velocity. On the other hand, if the expected velocity is pointing in
the wrong direction, then the goal will still be attained eventually (assuming that
the state space is finite), due purely to randomness. Now, however, the exponential
character of having to perfcrm several operations, each of which succeeds only with
some probability, becomes dominant.
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Figure 3.13: A bounded two-dimensional grid, with the goal at the origin.

3.4.3 General Random Walks

Thus far we have looked only at random walks for which the transition
probabilities are identical over all the (interior) states. If one varies the probabilities,
then one can obtain mixtures of the three types of random walks discussed thus far.
For instance, if some of the local velocities point away from the origin, whereas most
point towards the origin or at least are zero, then one can obtain convergence times
that are worse tl.an linear or quadratic, but do not yet approach the exponential
character of a random walk for which all velocities point away from the origin.
Examples in which this type of behavior arises naturally are given by random walks
in higher dimensions. For instance, consider the two-dimensional grid of figure 3.13.
Consider a two-dimensional random walk on this grid, in which transitions occur only
to immediate neighbor points, each with probability 1/4, and reflection occurs at the
boundary. Suppose the origin is the goal, and consider the one-dimensional quantity
given by distance from the origin, measured as Manhattan distance. For points off
the horizontal and vertical axes, two of the four possible transitions decrease the
distance to the goal, while two increase the distance from the goal. The expected
change in distance from the origin is in fact zero, that is, the “drift velocity” relative
to the origin is zero. On the other hand, for points on either of the axes, only one
transition decreases the distance from the origin, while three increase the distance.
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The expected change in distance is in fact +1/2, that is, the drift velocity points away
from the origin. Fortunately a point on one of the axes has probability 3/4 of either
moving off the axis or of moving closer to the goal. Thus, even though the natural
drift on the axes is away from the origin, the system cannot get stuck on the axes,
so that one does not see an exponential convergence time. This particular mixture
of velociiies that are either zero or point away from the origin yields a maximum
expected convergence time that is on the order of a? loga. Here the grid has edge
length a (see [Montroll]). This is slightly worse than the quadratic convergence time
for the one-dimensional random walk in which all the (interior) local velocities were
zero, but not so bad as the case in which all the velocities actually pointed away from
the goal. In higher dimensions, the mixture gets slightly worse, so that on a grid in
d dimensions the maximum expected convergence time is on the order of a?, which is
the grid size. All of these times are still polynomial in a.

3.4.4 Moral: Move Towards the Goal on Average

In the previous examples the natural drift was either zero or it pointed away from
the origin. In order to attain expected velocities that point towards the origin, one
needs some mechanism that naturally skews the random walk towards the goal. If we
think of the random walk as arising from some underlying mechanical task, then this
direction must be given by either the mechanics of the task or by the use of sensors.
For instance, the goal might physically be located at the bottom of some trough or
funnel. Alternatively, if the sensors provide enough useful information then one may
be able to guide the system towards the goal on average.

The moral is that in order to obtain reasonable convergence times for some task,
one should try locally to make progress on the average. In fact, one need not guarantee
progress at every location or at every moment. However, if there are a reasonable
number of locations for which progress occurs on the average, then convergence will
be reasonably quick. This view of the world is considerably different from the one
that insists on guarantees at every step.

Given these observations, the study of robotics, in particular the study of
automating the solution to assembly tasks, becomes one of finding a proper mixture
of sensing, motion, and randomization, that ensures progress on the average. Other
issues include the definition of progress itself, plus numerous details that delineate
the scope of the approach. The remainder of the thesis will address some of those
issues.

3.5 Expected Progress

The first issue that needs to be addressed is the definition of expected velocity in
the setting of a general Markov chain. For the one-dimensional random walk, with
transitions only to neighbors, this was fairly straightforward, but we need a precise
definition for the general case. The second issue is whether these so-called velocities
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behave nicely, in particular, whether increasing the expected velocity towards the goal
at some point, reduces the expected time to reach the goal. This is certainly true in
the deterministic case, and one would like it to hold as well for the probabilistic case.

The basic motivation for defining a velocity is to be able to discuss the speed
with which progress towards the goal is made. In turn, this allows us to analyze
and compare different randomized strategies. So let us suppose that we have a finite
state space with states sg, 81,...,3,, With a single goal state so. Let us assume that
we are given a labelling of these states, that is, to each state s, there is associated
a one-dimensional number ¢; (perhaps a real number). The idea is to view these
labels as defining a progress measure, then to define expected velocities in terms of
the expected progress determined by this progress measure.

To make this precise, let P = (p;;) be the probability transition matrix for some
chosen strategy for moving from non-goal states to the goal. We are assuming that
the task is formulated in such a way that the effect of our strategy may indeed be
described probabilistically at each step of execution. Then the average or expected
velocity at state s; is defined to be

(3.10) w Y P (6, - 4).
i=1

The sum on the right just measures the average displacement from state s,
measured in terms of the labelling, caused by a single step of the strategy. Thinking
of each step as being one unit of time then yields the average velocity. Note that we
can rewrite equation (3.10) as

n

(3.11) v = Zp,'j é’j - [,‘.
1=1
That is the definition, and here is the main claim of this section. It establishes
the usefulness of the definition of expected velocity.

Claim 3.7 Consider a Markov chain with states {s;} and probability transition
matriz (p;;). One of the states, say sy, is a goal state. By this we mean that all states
eventually transit to sg. Suppose further that {{;} is a labelling of the states which
is zero at the goal state and positive elsewhere. Let £ = max;{{;} be the mazimum
label, and let v = max;{v;} be the mazimum ezpected velocity defined by this labelling.
Finally, let D = max;{D;} be the mazimum ezpected time to reach the goal, where D;
is the ezpected time to reach the goal given that the system starts in state s;.

The claim is that whenever v is negative, then

p<-<
v

Said differently, the mazimum ezpected time to reach the goal is bounded by the
mazimum distance to the goal (measured by the labelling), divided by the minimum
ezpected velocity of approach to the goal:
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max D; < -maxitli}
t mm.'{—v.-}

In fact, for each state, the expected time to reach the goal is bounded by the state’s
label divided by the minimum expected approach velocity:

¢;
min,-{—v,-} ’

Proof Strategy. The basic strategy of the proof is to first establish that if the
expected velocity is the same at each state, then the expected time to attain the
goal is just the state label divided by this expected velocity. We then show that any
Markov chain satisfying the hypotheses of the claim may be formally modified so that
the expected velocity is the same at each state. [This modification is purely a proof
technique and has nothing to do with the underlying physical process.] Finally, we
show that the modified Markov chain may be transformed back into the original chain
in such a way that the expected convergence times decrease or remain the same. This
will establish the claim.

D; <

=

Proving the claim will require a little bit of work, but it is intuitively desirable
and clear. The claim shows that under suitable conditions a general Markov chain
behaves very much as does the one-dimensional random walk discussed in section
3.4.2. Specifically, if a randomized strategy can ensure that on the average it decreases
sufficiently quickly some measure of distance from the goal, then the expected time
to attain the goal will be linear in that measure. From a planning point of view this
suggests two problems: finding strategies that make local progress relative to a given
progress measure, and finding useful progress measures.

In order to establish the claim, we will state and prove several other simple
propositions. These will provide further intuition regarding the nature of progress
measures within randomized strategies. First, let us turn the problem around. Instead
of starting with a labelling of the state space and determining a strategy for making
progress relative to the labelling, suppose one started with a randomized strategy.
In particular, suppose a randomized strategy is given that turns the state space into
a Markov chain that eventually converges to some goal state. It is natural to ask
whether there is a labelling of the state space relative to which the strategy may be
perceived as making progress. The answer is of course yes. If one simply labels the
states with their expected times until success, then the induced expected velocities
will all be —1. Essentially the labelling spreads out the states far enough that the
distance between them corresponds precisely to the difference in expected times to
reach the goal. Of course, the labels may now be very large numbers! We prove this
observation in the following claim.

Claim 3.8 Given a Markov chain ({s;},(pi;)) for which all states eventually transit
to some goal state sq, label each state s; with D;, the ezpected time to attain the goal
given that the system starts in state s;. Relative to this labelling the induced ezpected
velocities {v;} are all —1 (for non-goal states).
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Proof.  We have that D; = ¥7_opi; D; + 1. This is just a generalization of the
argument used to establish the convergence times for random walks (section 3.4.2).
Rewriting this, we see that 3°7_, pi; D; — D; = —1. Interpreting the expected times
as labels, we see by (3.11) that the left-hand side of this equation is just v;, which
establishes the claim. ]

This says that labellings are a patural means of characterizing a strategy’s
behavior. It also indicates that the search for a useful labelling is futile, since any
strategy can be made to appear to converge quickly relative to a suitable labelling.
It is in fact more appropriate to view the situation in reverse. If one is interested
in convergence speeds of a particular type, then one should look at labellings whose
labels do not exceed the desired convergence times. For any such labelling one can
then determine whether a strategy exists that makes rapid progress. Indeed, in many
cases a natural labelling may be apparent, such as one given by the distance or
distance squared from some goal.

Finding a strategy given a labelling essentially entails choosing the (n + 1)?
probabilities {p;;}, subject to the constraints v; < 0, and ¥} op;; = 1, for all
1=1...., n. If choosing these probabilities can be done mdependentl} for each state

si, then the existence of a fast strategy relative to a labelling may be ascertained very
quickly, since all the computations and constraints are local to each state s;. In many
cases. however, the strategy cannot be determined locally. For instance, the action
performed in a given state will depend on a sensor value returned when the system is
in that state. Since different states can give rise to the same sensor value, a strategy
based on sensed values will necessarily couple the p;; at different states. We will see
the significance of this topic later, both in this chapter and in chapter 5. Indeed it will
turn out that for simple labellings, such as distance from the goal, average progress
cannot always be guaranteed for every state in the system. Instead, one naturally
gets mixtures of states, some for which rapid progress is possible and some for which
it is not, just as we did for the two-dimensional random walk discussed in section
3.4.3.

An immediate corollary to Claim 3.8 is the following.

Corollary 3.9 If relative to some labelling {{;}, all the ezpected velocities are equal
to a negative constant v.,n,, then the ezpected times to reach the goal are given by
D; = —&;/veonst-

Proof. Using the expression (3.11), we have that at each state s;

Uconst = U

= Zp,'jfj - £.~.

j=1

Relative to a new labelling {¢;} given by €; = £;/(—vcons), One observes that:
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i=1
By the proof of claim 3.8, it must therefore be the case that £; = D; for all states
s;. (Uniqueness of the D; follows from the assumption that all the states eventually
transit to the goal. See also chapter 10 of [KT2].) This establishes the corollary. I

This corollary is useful in conjunction with the next lemma, which establishes that
we can always modify a finite Markov chain whose expected velocities are negative
so that its expected velocities are all equal to some non-zero negative constant. In
particular, we will show that if the average velocity at some state is negative then
that state’s average velocity may be increased (that is, its absolute value may be
decreased) by changing into self-transitions some of the transitions that point to
states with lower labels. [Note that we are not claiming anything about whether the
underlying physica! process may be changed.] For a finite Markov chain with negative
expected velocities this immediately implies that the chain may be modified so that
all expected velocities are some negative constant. As we outlined on page 130. this
is useful as a proof device for the proof of claim 3.7.

Lemma 3.10 Consider a labelled Markov chain ({s:},(pij), {¢;}). Suppose that the
expected velocity v, at some stale s is negative. Let a satisfy vi < a < 0. Then one
can modify the k** row of the probability transition matriz (p;;) so that the velocity at
s; becomes a. Furthermore, one need only increase py, and commensurately decrease
Px, for values of j for which €, < (.

Proof. Let Av=1v, —a. Then vy < Av <0.
Since v, is negative, we have that ¢, < ¢, for at least one j (see the definition.
equation (3.10)). Furthermore, taking all these s; together, we must ha-e that

Z P (€, — k) < v < Av.
6,2t

For the purposes of argument it is enough to assume that there is one j = jo for
which p;, (€5, — €x) < Av. The general case follows readily from this.

Now define a new probability transition matrix (p{;) which is identical to (p;;),
except for py, and pi, . Specifically, let pi, = pu + p and pi;; = pij, — p. where
p = Av/(¢;, — ¢). One verifies that 0 < p < pyj,, 50 the construction makes sense. It
is easily seen that the induced velocity v, equals a, thus establishing the lemma. |

As an aside, one notes that the lemma holds with proper modifications for positive
expected velocities, although this is less useful in th2 current context.

Now we need a lemma that goes in ihe other direction. Specifically, if we increase
the average velocity with which the goal is approached at some point, then we would
like to know that the expected time to reach the goal decreases. From our random
walk example, and given the phrasing of this claim, this is intuitively clear, but in
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a general setting some proof is required. The following lemma forms the core of our
proof of Claim 3.7.

Lemma 3.11 Consider a Markov chain with n+1 states s, s1,.. ., 8, and probability
transition matriz (p;;). Suppose state sq is the goal state (this means that all states
eventually transit to sy and remain there). Let D; be the expected time to reach s
given that the system starts in state s,. Now consider two states s; and s, for which
D, > D,. Construct a new Markov chain on the same staie space with a modified
probability transition matriz (p);) that is almost identical to (p;;). It differs in that
Piz = Pzz — p and p},, = pzy + p, where p is any number satisfying 0 < p < p... If
{D!} are the new ezpected times to reach the goal, then D! < D, for all states.
Furthermore, if p is noa-zero, then D), < D,.

Proof. The proof is long, although the idez is simple: Separate the behavior of
the system into two parts. namely what happer at all states but state s;. and what
happens at state s;. The behavior of the new system changes only at s, (although
the expected convergence times may change throughout the system), and intuitively
that chang: only increases the probability of moving closer to the goal. Thus the
expected convergence times should decrease. All this makes sense if we think of
expected convergence times as labellings akin to distance measures.

And now for the details.

Let g; be the probability that starting in state s; the system reaches state s
before it reaches state s,. This probability is well-defined for all states. Alsu, note
that go =1 and g, = 0.

Let Df be the expected time to reach state s, from state s;, given that the system
reaches s, before sg.

Let D? be the expected time to reach state s, from state s;, given that the system
does not pass through s..

And, let D*° be the expected time to reach either state s, or state so from state
s; before reaching the other.

One observes that D7*® = g, D? 4 (1 — ¢;) D7, and that D; = ¢; D°+ (1 — g;) [DF +
D,].

Then for each ron-goal state «;, we have that

(3.12) D, = 1+ p;D,
1=0

(3.13) = 1+ pi; [9; D2 + (1 - ¢;) D} + D]
J=0

(3.14) = 14 p, DI+ pi;(1-g,)D-.
=0 =0

Now. if we makes changes to p., and p,, as suggested, the.. the expected durations
{D;} will change, but all of the quantities {g;} and { D7} will remain the same. To
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see this. observe that when ¢ # r, ¢g; depends only on transitions at states other than
state s;. None of these transitions are affected by the changes to p;; and p;,. A
similar argument applies to {D?°} for 1 # z. Finally, observe that g. = 0 always,
and thus that DZ% = DZ = 0 always.

Let us write out equation (3.14) for the state s, and simplify to get an expression

for D,:

D.=1+3 p;;iDi°+ Y ps; (1 - g;) D
1=0

=0

So, solving for Dy,

D, |1- ZPU(I “gj):l =1+ Zpl'] D;‘.O’
=0 =0

and thus:

_ 1 + E?:O pr] D]I‘O
1 - Z?_-op«rz (1—g;)
Now, let us introduce an artifice, by defining { D} and {p};} to be functions of p,

where 0 < p < p,.. As mentioned already, these are the only quantities that change.
In particular. we have that

(3.13) D,

Pzz — P 1fl=_]:.’1,
P:)(P) =4 Pryt+p ili=randj=y
Dij otherwise.

Substituting these changes into equations (3.14) and (3.15), and noting that DZ° = 0,
we have that

(3.16) Dip) =1+ p; DI+ pij(1-g,) Di(p), ifi#z, i#0.
]:O j:O
! 1 ke I I T
Dilp) = F5i1+ 3" pe; DF° + (pey + P) DE° + (pez — p) DZ°
oy
1#z
1 z ;4 X
(317) = m{l+zpszJ‘o+PDv‘o}$
1=0

where (recalling that g, = 0)
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f(p) Zp,, )(1 - g;)

1- Z prJ — Py +p)(1 _gv) (pzz — P)

J#y
J#T

n
(3.18) = szjgj + Py

=0
Notice that f(p) is always positive, in particular, it is never zero, so these equations
make sense. To see that f(p) cannot be zero, first observe that f(p) > f(0) > 0
Then observe that f(0) is just the probability that if the system starts in state s,
it will reach the goal s before reencountering state s;. If this quantity were indeed
zero, then the goal would be unreachable from state s., violating our connectivity
assumption (see also section 3.2.7).

In order to establish the lemma one needs to verify that D!(p) < D!(0) for all p in
the range 0 < p < p... From equation (3.16), it is clear that whenever D.(p) < D.(0),
then Dj(p) < Dj(0) for all states s; with ¢ # z, so let us focus on showing that
Di(p) < D_(0). We will do this by showing that the derivative of D’(p) with respect
to p is negative for all relevant p. In fact, by showing that this derivative is strictly
negative, we establish the strict inequality of the lemma.

Now

dD.(p) _ _N(p)

dp — (f(p)*’
so it is enough to establish that .V (p) < 0, where by equations (3.17) and (3.18)

n . . d
D= f(p) - 143 pss Dj.o”Dy.o) /i)
j=0 P

il

N(p)

1=0 1=0

= DI° (sz,- gj) -9y (1 + > P D,’-'O) :

=0 =0

= e (Zp,,-g, + pg,,) - (1 +3ps; D70 + pD$‘°) 9y

The assumption of the lemma that D, > D, says that

D: > D,
= gvDO — Gy [DI+D=]
= D:o (1 —gy) D:.
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(3.19) So g¢,D. > D

From the expression for D, given by equation (3.17) and the expression for f(p) given
by equation (3.18), we see that for p = 0

0
_ 1 + Z?:Opzj D;

L
i Z?:O pl‘] gJ

Thus equation (3.19) becomes

9y (1 +3 ps Df"’) > Dy° (angj) :
1=0

1=0

But this says precisely that N(p) < 0, thereby establishing the lemma. ||

Comments on Lemma 3.11

Lemma 3.11 nearly allows us to reverse the process described by lemma 3.10. The
main difference is that lemma 3.10 refers to states by their labels, while lemma 3.11
refers to states by their expected convergence times. For a single state s, and a single
state s, as in the statement of lemma 3.11, this poses no serious problems. However,
in order to prove claim 3.7 we will need to apply lemma 3.11 to several states s, and
several states s, simultaneously. The following comments are intended to prove that
the more general formulation of lemma 3.11 is valid.

Comment 1. Observe that if o is strictly negative in lemma 3.10, then none of the
probabilities {p;;} need to become zero when they are changed, unless they are zero
already. This means that a Markov chain that satisfies the probabilistic connectivity
assumption of section 3.2.7 will continue to satisfy that connectivity condition after
the modifications of lemma 3.10 have been performed. In other words, the goal
reachability assumption of lemma 3.11 continues to be satisfied. The purpose of that
assumption in the hypotheses of the lemma is simply to ensure that the expected
convergence times are well-defined. In particular, the theory of Markov chains tells
us that the systein of linear equations reiating those expected convergence times has
a solution, and that that solution is unique.

Comment 2. Observe further that lemma 3.11 continues to hold when the single
target state s, is replaced by a multitude of such states. In particular, suppose that
one is given a state s, and a collection of states Y = {s,,,...,s,,} disjoint from s;.
Suppose further that there exist k non-negative numbers {),,..., A, }, that satisfy
the conditions

SAa=1, D> 3% A\D,

s €Y s, €Y
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Then the conclusion of lemma 3.11 continues to hold, assuming that one takes
Pry = Pzy + Ayp, for each state s, € Y. The proof of the lemma goes through as
before, except that g, is replaced by 3_, ¢y g, and D, is replaced by 3°, ¢y Ay D;.

Comment 3. If we look carefully at the proof of lemma 3.11, we see that the
claim of the lemma can be ~onsiderably strengthened. Recall comment 2. Now let
p increase from 0 to p;;. Let us examine the behavior of the expected convergence
times {D!}%,. We have a three-way case statement:

1. f D. > ¥, ey Ay Dy, then D decreases strictly, while all other D; either remain
constant or decrease.

2. If D, < ¥, ey AyDy, then D increases strictly, while all other D either remain
constant or increase.

3. If D; = L, ey AyDy, then all D] remain constant.

These comments follow from equation (3.16) and the computation of the derivative
dD’ /dp on page 135.

Comment 4. Finally, suppose that instead of a single state s, one is given a set of
states {s,} in lemma 3.11. Assume that for each such s, there is a collection of states
Y., whose weighted expected convergence times are less than the expected convergence
time D, of s., as outlined in comment 2. The claim is that if one simultaneously
modifies the transition probabilities as outlined in comment 2 for each of the states
sz, then the expected convergence times of the resulting Markov chain improve.

We would like to know that this generalization of lemma 3.11 is correct. Ideally,
in proving this generalization, one would iteratively apply lemma 3.11 and comment
2 for each of the states s; in turn, until all the modifications suggested had been
accomplished. Unfortunately, such an iterative application of lemma 3.11 need not
be valid. This is because the lemma says little about the relative improvement in
expected convergence times for different states. Thus, in performing the modifications
suggested for one state s,,, one could possibly modify the expected convergence times
of all the other states in such a way that the hypotheses of the lemma no longer are
satisfied for some other state s,,. In particular, it could happen that

D ;—'2 < E ’\VD ;I’
8y€EYx,

in the modified Markov chain. In that case, lemma 3.11 no longer applies. We thus
need a slightly more elaborate argument. In particular, we will apply lemma 3.11
repeatedly. However, we will allow for the possibility that the transitions out of each
state s;, may need to be modified several times.

Let us set up the general version of lemma 3.11, then offer a proof. The most
general version simply assumes that one may change the transition probabilities at
any non-goal state. Thus, for each non-goal state s; in the state space, suppose
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that we are given n + 1 numbers {);;}7_, that are either all zero (meaning that no
transitions out of s; are to be changed), or that satisfy the following four conditions:

Aii=07 AijZ(),j:O""?n’

n /\,‘j =1, D; > Z/\.‘ij.

3=0
3=0

Now, for each state s; for which the {);;}7_, are not all zero, let ¢; be any number
satisfying 0 < ¢; < pii. Take g; to be zero if all the {A;;}?_, are zero. The probabilities
{4} play the role of the probability p in the statement of lemma 3.11. Suppose
that one constructs a new Markov chain on the old state space by modifying the
probabilities as follows (for i = 1,...,n):

' ooy pi—g, ifj=q
Pij{au, 19n) = { pij + Aijgi, otherwise.

[We assume, as always, that there are no transitions out of the goal.]

Then the claim is that the expected convergence times D] = Di(q;,---,qn) of the
new Markov chain are no worse than those of the old chain, for all legal values of
qrs-«-1Gn-

Let us focus only on those ¢; for which not all of the {A,;}]_, are zero, leaving all
the other ¢, fixed at zero. Consider one such ¢; for a moment. The proof of lemma
3.11, in conjunction with comment 2, tells us that for each state s; the expected
convergence time D}(0,---,0,¢;,0.---,0) improves or remains the same as g; varies
from 0 to p;;. However, the lemma says nothing about what happens if we vary several
of the {g;} simultaneously. Indeed, it is not difficult to construct examples for which
the expected convergence times first improve, then begin to get worse again, as the
{q;} are each in turn increased from zero to their appropriate maximum values (p,;
for ¢;). However, in all of these examples, the expected convergence times are always
better than the initial expected convergence times of the unmodified chain. In other
words, for all legal values of the {¢;}, and all states s;, D}(q1,"-,¢.) < D}(0,---,0).
We now outline a proof of this fact.

First, some notation. We will let the vector q € R" be shorthand for (¢;,-- -, gn).
Also, Qpax Wwill denote the vector q for which each of the ¢, is at its maximum legal
value (either 0 or p;;). Finally, let D!(q) denote the expected convergence time for
state s;, as determined by q.

We will now construct a sequence qo, qy, . . . , Gm, such that go = 0 and qm = Qmax.
Furthermore, any one element qx in this sequence differs from the previous element
Q-1 in exactly one coordinate. In other words, qx—qi_; = (0,...0, Ag,, 0,...,0), for
some Ag; > 0, representing an increase in the value of ¢;. The sequence qo,...,q.
will be chosen in such a manner that as q varies from qx to qi4; the expected
convergence times {D’(q)}?_, all either decrease or remain the same. It follows that
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D! (Qmax) < Dj, for each j = 0,1,...n. And thus the general version of lemma 3.11
will be proven.

In order to construct the sequence qy,...,Qm, define the functions L;(q) =
-Di(q) + 70 AijDj(q), for ¢ = 1,...,n. Observe, by comment 3, that whenever
L;(q) is negative, then ¢; may be increased up to its maximum legal value without
increasing any of the expected convergence times D}(q). Furthermore, if actually
L:(q) is zero, then ¢; may be changed within its legal limits without affecting the
expected convergence times at all.

By hypothesis, all the {L;} are negative or zero at q = 0. Without loss of
generality, we may assume that L, is negative. Then one may construct q; by
changing ¢;. In particular, if it is possible to change ¢ to its maximum value without
causing any of the {L;} to become positive, then we will do so. Otherwise, one
of the {L;} must become zero for some value of Ag;. In particular, suppose that
L; (qi) =0 for q; = (Aq,0,...,0). Then we can next allow g;; to vary from zero to
its maximum legal value (say p;,; ), without affecting any of the convergence times.
In other words, q2 = (Aqy,0,...,0,p;,,,,0,...,0). In computing q; we again increase
q1- This is legal, since Li(qz) < 0 by construction. We repeat this process, until ¢;
has been increased to its maximum value, at which point we move on to some other
g;. The whole process is repeated several times, until all the ¢; have been changed
from zero to their maximum values.

The key observation in the process described above, is that we always modify only
one ¢; at a time, namely one for which L; < 0. In particular, if L; = 0, we modify
¢i; completely, and thereafter forget about it. If it is merely true that L; < 0, then
we are careful to modify ¢; only so far until one of the other {L,} that are still under
consideration becomes zero. And so forth.

We can now finally prove the main claim, namely Claim 3.7.

Proof of Claim 3.7. Recall that v is the maximum expected velocity of the
Markov chain relative to the labelling {¢;}, and that this expected velocity is strictly
negative. By Lemma 3.10, one can modify the transition probabilities so that the
expected velocity at each state is exactly equal to v. Furthermore, for a given state
8, the only changes to the transition probabilities entail increasing p,. and decreasing
Pzy for values of y that satisfy £, < £,. By Corollary 3.9 the expected success times of
the resulting chain are precisely proportional to the statc labels, with proportionality
constant —1/v.

Now imagine reversing the modifications, so that one gets back the original chain.
This is just the process described by Lemma 3.11 and subsequent comments. These
observations therefore establish that the expected success times of the original chain
are no greater than the success times of the modified chain. In short, D; < ~¢; /v, as
claimed. |}




140 CHAPTER 3. RANDOMIZATION IN DISCRETE SPACES

3.6 Progress in Tasks with Non-Deterministic
Actions

The claims of the previous section apply to actions in which the effects at each step
and in each state are probabilistically determined. However, as we mentioned at the
outset, for many tasks the actions are merely non-deterministic, that is, no probability
distributions are given. In this case, the claims do not apply. In particular, the
definition of an average velocity no longer makes sense. Of course, one can define a
worst-case velocity, which measures the least amount of progress possible in any given
state, and then variants of some of the claims will go through. This does not seem
very satisfying, for two reasons. First, insisting that the worst-case velocity point
towards the goal is not much different from insisting on deterministic actions. And
second, often it is simply not possible to ensure that progress is made towards the
goal. This is particularly true in the imperfect sensing case.

Surprisingly enough, however, the condition that the worst-case velocities point
towards the goal characterizes the tasks for which solutions exist, at least when sensing
is perfect. This section therefore presents a brief exposition of this condition.

First, we have the following claim.

Claim 3.12 Let (S,A,=,G) be a discrete planning problem, where S is the set of
states, A is the sel of actions, = is the sensing function, and G is the set of goal
states. Assume that = is the perfect-sensing function (this will be relazed later).

Suppose that there erists a guaranteed strategy for moving from any state to the
goal set G. Then there erists a sequence of disjoint sets Sy, Sy, ...,S; that cover S,
such that states tn the set S;,, can traverse to states in the union D; = Uj»=0 S;ina
single step. Furthermore, Sy = G, and £ < r = |S| —|G|.

It follows that there is a perfect-sensing strategy that moves through the tower of
sets S = Dy D --- D Dy D Dy = G in decreasing order until the goal is attained.
Furthermore, the strategy moves down at least one level in this tower on each step of
ezecution.

[A definitional note: To say that a strategy is in one of the levels D; at a particular
time, means that at that time one of the possible states of the system is in the set
S; and no state is in a set S;, with § > i. To say that a strategy moves between two
levels means that there is an execution trace for which the strategy first finds itself
in one level, then one step later in the next level.]

Proof. The proof is based on the construction used in the proof of claim 3.4, which
we repeat here. Define S, to be G, and then inductively define S;,, to be the set of
all states s in § — U;=0 S; for which there exists a single-step action that causes s
to traverse to some state in the set U}_,S;. The sets S; are well-defined, and by
construction they are disjoint. We need to show that they cover S and that there are
no more than r of them. Note that the set U;=o S; is just the set of all states that can
be guaranteed to reach a goal state in i or fewer steps. The existence of a guaranteed
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strategy means that all states can be guaranteed to reach the goal in a finite number
of steps, so the {S;} cover S. Finally, by claim 3.5, no more than r steps are ever
required.

The second part of the claim follows immediately. [}

This claim is very similar to the proofs of claims 3.4 and 3.5. The difference is that
the current claim emphasizes the overall structure of the perfect-sensing strategy. Not
only do individual execution-time traces of the perfect-sensing strategy never need
to revisit a state, but seen as a whole, the strategy should permanently prune away
possible states on each step. Intuitively this makes sense. After all, if there is some
state that does not get pruned away, then it is possible to repeatedly encounter that
state, which means that the strategy cannot be guaranteed to converge to the goal.

Notice also that the fact that the sensing function is perfect is really not used in
the proof, except to limit the number of sets that are required. This should not be
surprising, given the equivalence between the existence of a perfect-sensing strategy
and goal reachability in general, as established by claim 3.4. This then leads us to
believe that the claim holds for an arbitrary sensing function, and indeed it does, with
precisely the same sets {S;}. However, whereas these sets actually define a strategy
in the perfect-sensing case, they only hint at one in the general case. Specifically, one
has the following corollary, which despite the length of statement, is actually quite
weak.

Corollary 3.13 Consider a system as in the previous claim, but with an arbitrary
sensing function =. Construct the sets {D;}, as in the proof of the claim. Suppose
there is a strategy that is guaranteed for each possible starting state to attain the goal
set G.

Then this strategy must necessarily move through the sets S =Dy D --- D Dy D
Dy = G in decreasing order until the goal is attained. However, the strategy can spend
several steps of ezecution within one level of this tower before proceeding down to a
lower level, and can even move back up levels.

Proof. If the strategy is in level D;, then there is at least one possible state of the
system that may require 7 steps to reach the goal. This says that there is a possible
executicn trace for which the system must first pass through an immediately lower
level before reaching the goal. [

In order to summarize, suppose we have a non-negative labelling of the states {¢;}
that is zero at the goal. Now define for any state s and any action A, the worst-case
velocity to be

= -/
VA, tg},i-z(.)(lt a)v

where F4(s) is the the set of states that the non-deterministic action A might transit
to from state s.

daitiuigiams
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In a sense, this velocity measures the minimum approach to the goal, relative to
the labelling. If v, is negative, then no matter which non-deterministic transition
is actually followed, the system is making progress.

For the perfect-sensing case, we see that one can label all states in the set S;
with the number ¢. Then the worst-case velocity at each point is —1, and the system
will reach the goal in no more than i = —¢,, /v,, .4, steps, for each state s; and its
perfect-sensing action Ai. In short the formalism carries through, trivially, in the
perfect-sensing case.

In the more general case, it is not clear whether it really makes sense to define
the worst-case velocity at a state. For one thing, the action executed in a state is
not well-defined, since a state may be revisited several times during the execution of
a strategy, but the action executed will generally depend on the system’s knowledge
state, which will be different. Hand in hand with this is the lack of substance provided
by a progress measure on the state space, as indicated by corollary 3.13. However,
if one not only maximized over all possible target states in the definition, but also
over all possible actions that a strategy might execute in a given state, that is, if one
defined the worst-case velocity to be

(3.20) v, = (& - ¢,),

max max
applicable t€F4(s)
actions A

then the linear convergence result basically goes through as before. This result is
probably too weak to be useful.

One issue may be bothersome. In the probabilistic setting, this strong distinction
regarding the use of a progress measure with perfect sensing versus the use of a
progress measure with imperfect sensing did not seem to arise. In fact, it does arise,
but this was not relevant to the discussion on Markov chains. In the discussion of
progress measures on Markov chains we were tacitly assuming that the effect of an
action and the interpretation of a sensor in deciding on an action depended only on
the current state of the system. This makes sense in the perfect-sensing case. It also
makes sense if actions are selected directly as a function of sensor values, and not as
a function of the interpretation of those sensor values in terms of past information.
In general, however, the interpretation of a sensor depends on the knowledge state
of the executive system, not just on the actual state of the system (see sections 3.2.5
and 3.2.6). Once one re-introduces this dependence, then the distinction between
perfect and poor sensing becomes important, both in the non-deterministic and the
probabilistic settings.

3.7 Imperfect Sensing

In general, given an imperfect sensor, the appropriate states of the system are the
knowledge states. In the non-deterministic setting these are all the subsets of the
underlying state space, while in the probabilistic setting these are all the probability
distributions over the underlying state space. One can then define labellings and
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progress measures as before on this space of knowledge states, and all the results will
go through. Formally, this is the correct description of the problem. However, as we
have already indicated, the general planning problem is hard, which is reflected in
the exponential size of the space of knowledge states. For this reason one seeks less
complete approaches that nonetheless can handle a variety of tasks. This is precisely
the reason that we decided to consider the special case settings of random walks and
Markov chains in the first place.

3.8 Planning with General Knowledge States

In order to deal with the general sensing case, it is useful to consider a planner
for determining guaranteed strategies for achieving the goal. A guaranteed strategy
in this context means a bounded number of actions and sensory operations that are
certain to attain a goal state from the specified initial states, under the specified model
of uncertainty. In general the actions will be functions of sensors, that is, the strategy
will involve conditional choices based on non-deterministic events whose outcomes
cannot be predicted at planning time. Nonetheless, the flow graph of these choices
and non-deterministic events can be written out, and it has finite size and converges
to the goal. The planning approach described in this section is a specialization of the
preimage planning approach defined by [LMT)]. It may also be thought of as dynamic
programming with a boolean cost function (see [Bert]). Before reaaire this section,
it may be worthwhile to reread the example of section 3.2.4.

The basic idea is to apply backchaining in u state-space whose states are the
knowledge states of the executive system. By construction, “sensing” in such a space
is perfect. This means that by definition the system knows exactly which (knowledge)
state it is in at any point during execution. The approach is applicable to both the
non-deterministic and the probabilistic settings. Let us just briefly outline how the
planner might proceed for the non-deterministic setting. Uf S is the underlying state
space, then the planner’s state space is the set of all knowledge states, that is, the
space 2°. Let us assume that an action is always followed by some kind of sensing
operation (possibly a no-op). If A is an action in the underlying state-space, and K,
is a knowledge state, then the result of applying action A is a new knowledge state
K; (see section 3.2.5 for the details of how to construct K,). Now suppose that a
finite number of sensory interpretation sets can be returned by the sensor after the
action has been executed. The actual sensory interpretation set will in general depend
on the actual state of the system, plus possibly several other parameters. Let this
collection be {1y, 13, -,I;} = U,ex, =(3), and define K by Ki = K, I;. Then we
can write the non-deterministic effect of the combination of action A and sensing in
the space 2° as

A: K- K} K2 K
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This means that at execution time the action A (which corresponds to performing
action A followed by some sensory operation) will transit non-deterministically from
(knowledge) state K; to one of the states Kj. By construction, our sensing guarautees
that the execution system will know precisely which knowledge state has been
attained. Thus the problem is a perfect-sensing problem.

Since the problem has a perfect-sensing function, one can apply the techniques
previously discussed for such problems. In particular, one can plan strategies for
achieving a goal state (and knowing that it has been achieved) by backchaining
from the goal in the space 2°. This amounts to applying the dynamic programming
discussed in section 3.2.4. Backchaining entails first determining the collection K,
of all knowledge states that can attain a goal state with the execution of a single
action-sense pair, then determining the collection K; of all knowledge states that can
attain one of the knowledge states in the collection X, using a single action-sense
pair. and so forth. This construction is identical to the construction of the sets {S;}
in claim 3.12, but now these sets reside in the space 2°. The method of transforming
an imperfect-sensing problem into a perfect-sensing problem by moving to the space
of knowledge states is a standard technique (see, for instance, [Bert]). As we see,
this transformation combines an action and a sensory operation in the underlying
state space into a perfect-sensing operation in the space of knowledge states. An
alternate approach is to mode] the effect of actions and sensing operations as defining
an AND/OR graph in the knowledge space (see [Buc] or [TMG] for details).

There are two basic possible formulations of the planning problem. One is to seek
a sequence of motions that is guaranteed to move the initial knowledge state Z to the
goal state G. [The notation may be confusing, since so far we have thought of G as
being a set of goal states, but in the space of knowledge states this is just one state.
More generally, one could have several such sets {G;}, and the formalism would go
through.] A second approach is to limit a priori the number of steps considered. In
this case, one backchains for the specified number of steps, whereas in the previous
case one backchains until all knowledge states have been considered. In both cases, of
course, one can stop if at any step the backchaining process generates the knowledge
state 7.

An example should clarify all this notation:

Suppose there are three states, s;, s, and sg, where s¢ is the goal state. Suppose
that our sensor is good enough to tell us whether we are in the goal or not, but cannot
distinguish between states s; and s,. Finally let there be two actions, A, and A,,
specified by:

A 81 - s3,8¢ Ay: 81 — 8
Sy — 82 S —  Sg
S¢ — S8g, 8¢ H  Sg.

These actions are depicted in figure 3.14.
The space of knowledge states is given by the seven sets (we exclude the empty
set, which implies inconsistent knowledge):
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920

Aqy

>

Ay

Figure 3.14: Some simple non-deterministic actions on a discrete state graph.

{sl’ 32336}1 {31732}’ {sleG}9 {'529 3G}3 {sl}v {SQ}a {SG}'
For instance. the knowledge state
{31132}

means that at execution time the svstem knows that it is either in state s, or state s3,
but it does not know which one. If the system always performs a sensory operation
after each action, then, since the sensor can recognize the goal state for sure, one may
actually eliminate from the space of knowledge states all states that contain both the
goal state and some other state. Thus the relevant planning space is given by the
four knowledge states

{31,82}, {31}, {32}, {SG},

with § = {s¢} as goal state.
Let us compute the actions induced in the knowledge space by an action-sense
pair. For action A; we have:

A {s1,8) — {s2},{s6} Ay: {s1,82} — {si},{sc}
{s1} = {s}{s6) while A; becomes: {s1} = {si}
{s2} = {s2} {s2} — {sc}
{s¢} — {sc}, {sc} — {sc}

See figure 3.15 for a graphical display.
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Figure 3.15: This figure displays the knowledge states and actions corresponding to
the diagram of figure 3.14.
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{58, | i,

S, |

{
i
{sc

Figure 3.16: This figure shows how a backchaining strategy might evolve in the space
of knowledge states. See also figure 3.15.

Here is the dvnamic programming table for this problem. The horizontal axis
of the table indicates the number of steps remaining, the vertical axis indicate. the
current knowledge state. Each entry indicates the action to take in order to attain the
goal, given the number of steps remaining and the current knowledge 5’ ate. The table
is constructed by first backchaining from the goal, in order to construct all entries
in the column for one remaining step. theu backchaining from that column, and so
forth. A blank entry indicates that it is not possible to successfully and recognizabl
attain the goal in the number of steps specified from that knowledge state.

Steps Remaining
2 1 0
41 {Sla 32}
A, {s1} Knowledge States
A, Az {s2}
stop stop stop i {sg}

Actions guaranteed to attain the goal.

As the table indicates. it is possible to attain the goal from any non-goal initial state
of knowledge in at most two steps.

Let us relate this notation to the preimage planning methodology developed by
[LMT] (see also chapter 4). The entry in column 1 says that the preimage of the goal
under action A, is the set {s,}. This means that if the system knows that it is in
state s,, then executing action A, followed by a sensing operation is guaranteed to
attain the goal. This is written as Py, gp({sG}) = R, for R = {s,}. Similarly, the
top entry of column 2 comes from the fact that the set {s,, s;} is the preimage under
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action A, of the two sub-goals {s,} and {sg}. In the preimage methodology this is
written as P; p({s2},{sc}) = R, for R = {s1,s2}. This means that if the system
starts out knowing only that it is in either state s; or state s,, then after action A,
and a sensing operation, the system will have traversed to either state s; or the goal
sg, and the system will know which state it has attained. Figure 3.16 depicts this
graphically.

3.9 Randomization with
Non-Deterministic Actions

As we have formulated the problem thus far, the planner constructs a circuit of
knowledge states by backchaining from the goal. The problem is considered solved if
one of these knowledge states contains the initial state of the system. This is what
is meant by a guaranteed solution throughout this thesis. For some tasks however,
there is no such guaranteed solution. We mentioned this in the introduction. We will
quickly review the example of figure 1.17 on page 42 from the introduction. Assume
that the goal is recognizable, that is, that the sensing function for this problem can
detect entry into the goal state. If the initial state of the system is known exactly,
then there is a simple solution for attaining the goal. Specifically, if the system is in
state s;, then execute action A;, whereas if the system is in state s,, then execute
action 4,. On the other hand, if the initial knowledge state is the set {s;,s2} then
there is no sequence of actions guaranteed to attain the goal. Fortunately, there exists
a randomized solution that is ex vected to attain the goal very quickly. This solution
consists of guessing the state of the system, then executing the action appropriate for
that state. In this simple example. there are two possible choices for the starting state.
Thus. with probability 1/2 the randomized strategy will guess the correct starting
state. It follows that the expected time until goal attainment is two attempts.

This same approach of randomizing the initial state may of course be applied even
if there exists a guaranteed solution. The motivation would be to find a randomized
solution that requires fewer steps on average than the guaranteed solution.

3.9.1 Guessing the Starting State

Let us specify formally the relationship of randomization by guessing with the
guaranteed planning approach. As usual, we will view the planning process in terms
of backchaining, and specifically, in terms of dynamic programming in the space
of knowledge states. Consider the :olumn in the dynamic programming table that
corresponds to i steps remaining in the strategy. Consider all the knowledge states
{K;1,K;2,- -, K4} in this column that have non-blank entries. These are all the
knowledge states for which there exists a sequence of at most i actions guaranteed to
attain the goal. This collection is precisely the set D;, in the notation of claim 3.12.
Suppose that I is the initial knowledge state of the system. If Z = K ; for some j,
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then there is a guaranteed strategy consisting of no more than i steps that will attain
the goal. More generally, however, we may have that

&
Z0 g U K:',_r

i=1

In that case there exists a randomized strategy that consists of guessing an effective
knowledge state. To see this, suppose that T, is of the form {sy,82,--,5,}. In other
words, there are ¢ (with ¢ < n = |S|) possible starting states of the system. Thus
there exist g or fewer knowledge states in the collection D; which cover Z,. We may
thus assume that

q
T, € U Ki;
=

A randomized strategy consists of guessing between these ¢ knowledge states, then
executing the proper sequence of actions designed to attain the goal. For instance,
if the system were to guess that K, ; is a knowledge state that contains the actual
starting state of the system, then henceforth the system would execute all actions
and sensing operations as if the initial knowledge state really had been K ; instead
of Zy. Since the states {K;1, Kis, -, K;,} cover I, the guess will be correct with
probability no less than 1/q. Thus with probability at least 1/¢ the goal will be
successfully attained with a strategy requiring ¢ or fewer steps.

A simple example of this state-guessing approach is given by the two-dimensional
peg-in-hole problem of figure 2.2. If the resolution of the sensor is not good enough
to determine whether the peg is to the left or to the right of the hole, then a useful
strategy is simply to guess the side on which the peg is located. Depending on the
outcome of the guess, the system then moves either right or left. If the guess is correct,
the the peg winds up in the hole. If the guess is incorrect, then the system can either
guess again or use the failure as information to select the appropriate direction of
motion.

A more complex example will be given in the continuous domain in chapter 4. See
in particular figure 4.8.

3.9.2 Execution Traces

In order to gain some intuition as to the types of execution traces that might occur,
let us consider a randomized system at execution time. The system first guesses its
starting knowledge state, then executes some appropriate strategy. This strategy is
a guaranteed strategy for attaining the goal, in the sense that the strategy would
reliably ard recognizably attain the goal if the system knew for certain its starting
knowledge state. However, since the starting knowledge state is merely guessed, it is
possible that the system may encounter an inconsistency at execution time, reflected
by the empty knowledge state. We assume that the system ceases execution of its

e
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current guessed strategy should it ever encounter the empty set as a knowledge state
at run-time.

In general, the system might actually be able to decide that it has attained the
goal, even though an inconsistency has occurred (see claim 3.14 below). This decision
involves an additional test, that essentially takes into account the effect of all the past
actions and sensory interpretations on the entire range of possible starting states, not
just on those in the guessed knowledge state.

There are thus two different notions of failure to recognizably attain the goal.
One notion refers to failure relative to the guessed starting region. This failure is
evidenced either by the occurrence of an inconsistency or by the presence of non-goal
states in the knowledge state derived from the guessed starting knowledge state. The
other notion refers to failure of the more accurate test, which takes into account all
possible starting states. No inconsistencies can occur here, and thus this failure is
evidenced merely by the presence of non-goal states in the knowledge state derived
from the initial starting region Z,. Either notion of failure is reasonable, depending
on whether the more accurate test is implemented.

Suppose that a failure, by either definition, does occur. Then, under suitable
conditions, the system may guess a new starting knowledge state, execute a new
strategy for the :wly guessed knowledge state, and so forth, repeatedly, until the
goal is finally attained. We will elaborate on these conditions shortly.

In short, there are a couple of subtleties that need to be addressed. The first
issue deals with the behavior of the system if it guesses the wrong starting state. The
second issue deals with repeated guessing.

3.9.3 Incorrect Guessing

First, consider the behavior of the system if it guesses the wrong starting state. There
are four possible results: (1) The system completes execution without thinking that
it has attained the goal (although it may have), (2) the system thinks that is has
attained the goal when indeed it has, (3) the system thinks that it has attained the
goal when in fact it has not, and (4) the system encounters an inconsistency during
execution.

The first two of these scenarios are standard and do not require elaboration. As
an aside, let us note that scenario number one does not actually occur in the current
context. This is because the system is executing a strategy that is guaranteed to
attain the goal state from the (incorrectly) guessed starting state. Thus, either an
inconsistency must occur during execution, or the system must eventually believe
that it has attained the goal.

In order to understand the other two possibilities, imagine the behavior of the
system if it guesses a knowledge state K ; that does not contain the actual initial
state of the system. At each step, the system will perform some action and some
sensing operation as specified by the dynamic programming table. This action and the
returned sensed value are used to update the knowledge state, in the manner described
in section 3.2.5. However, since the knowledge state at each step of execution may
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not contain the actual state of the system, the resulting sensory interpretation sets
may not be consistent with the predicted forward projection of the knowledge state.
In other words, the set K; = Fa(K;)(I may be empty, where K is some knowledge
state, F4(K,) is the forward projection of K, under some action A, and [ is the result
of some sensing operation. One sees then that under this randomized strategy, the
empty set can appear as a knowledge state. If ever it does appear, then the system
knows that it has guessed incorrectly, and that it should stop execution. In fact,
inconsistencies can arise more generally, if the full sensing consistency requirement
is not satisfied. At any sensing time, the system knows what the possible sensor
values are that it should be able to see. If a different sensor value actually appears,
then an inconsistency has occurred, and the system knows that it originally guessed
incorrectly. Said differently, the set F4(K,)( I is empty (recall the meaning of (Y
from section 3.2.5). This explains scenario number four.

Scenario number three can occur precisely when no inconsistencies appear, despite
the initial guess having been wrong. In other words, the execution trace of knowledge
states from some initial knowledge state K;; to the goal G proceeds successfully,
despite the system not being in K ; initially. In some cases the system may wind up
in G serendipitously, but this need not be guaranteed. An example is given in figure
3.17. In this example there are two possible starting positions. The action executed
is to move straight down, until a collision with a horizontal edge is detected. There
are two such edges, one of which is the goal. If the system guesses that it has started
at the point p, (which lies above the goal edge), but is really at location p;, then the
knowledge state at the end of tF- motion will incorrectly indicate goal attainment.

See also (Don89] for further de.ails on the implications of “lying” to a system at
run-time by specifying the wrong start location. Donald has used this technique in his
work on Error Detection and Recovery to suggest multi-step strategies for trying to
attain some goal, in such a manner that the process winds up distinguishing between
those start locations that are guaranteed to attain the goal and those that merely
might attain the goal. Clearly the process of guessing the start region has strong
connections to his approach, as will become apparent in this section.

3.9.4 Goal Recognizability

Of ihe four scenarios, the only troublesome one is this third, the problem of false
goal recognition. The resolution of this problem requires an applicability condition.
Essentially the idea is to eliminate all possible execution traces that could lead to
confusing goal interpretaticns. Specifically, for any execution trace that does indicate
goal attainment, we want to ensure that the same execution trace applied to other
possible initial knowledge states either also indicates goal attainment or leads to
an inconsistency. We will state this condition formally, then simply enforce it by
assurning that the goal is recognizable independent of any history, that is, any
particular execution trace.

In order to state the condition formally let us introduce some temporary notation.
This discussion applies to the non-deterministic setting, but not necessarily to the
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Figure 3.17: The system starts in one of the two indicated locations, moves downward,
and detects contact with a horizontal surface. If the system knows that it started at
location p,, then the contact signals goal attainment. However, if the system merely
guessed that it started at p,, then the force sensor may falsely signal goal attainment.
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probabilistic setting. Given a starting knowledge state K, and a non-deterministic
action A in knowledge space, let us write the effect during execution of this action on
K as K;A;I, where A is the generating non-deterministic action in the underlying
state space, and / is a sensory interpretation set that is returned by the sensor
at execution time. In other words, K; = K;A;I, where K, is the knowledge
state determined from K in the manner of section 3.2.5, namely as F(K)(Y I, the
intersection of the sensory interpretation set with the forward projection of the start
state. More generally, given a sequence of actions {A, Az,..., Ax} and an associated
sequence of run-time sensory interpretation sets {I;, I, ..., I}, the effect on K will be
denoted by K; Ay; Iy; Ag; Ip; - - - ; Ax; I If ever a sensory interpretation set is returned
that is inconsistent with the possible sensory interpretation sets expected at that
point, the resulting knowledgz state is simply the empty set #. For consistency, we
therefore define 9; A; I = 0 for any action A and any sensory interpretation set I.

Suppose now that the system guesses that the initial knowledge state is the set
Ko. The strategy for attaining the goal G from Kj is encoded in the dynamic
programming table. Suppose that the first action, A,, is taken from the entry for
Ko in the k** column of the dynamic programming table. Execution of A, involves
execution of some action A, on the underlying state space, followed by some sensory
observation that yields a sensory interpretation set I;. Once fil has been executed,
the resulting knowledge state determines the next action to perform. This action
A, is again encoded in the dynamic programming table. Action A, in turn results
in some new run-time sensory interpretation set I, and so forth. If the initial state
of the system was indeed covered by the starting knowledge state Ky, then after k
actions the resulting knowledge state will be non-empty and inside the goal, that
is,  # KoiAu;L1; A2 ;- Aks Ik € G. The precise sequence is of course not
determined until execution time. On the other hand, if the initial state of the system
was not covered by Kg, then the final knowledge state may or may not be empty, and
may or may not accurately depict whether the goal has been attained, as explained
above.

Now consider the effect of the sequence A;;I;; Ay;Ip;---; Ay; Iy on knowledge
states other than the assumed starting knowledge state K,. In particular, consider
{s:}; Av; Ih; Ag; Iy - - - 5 Ay Ik for all singleton knowledge state {s;}. Suppose that for
each possible starting state s;, the final knowledge state {s;}; Ay; I1; Ag; Iy - - - 5 Aw; Ii
is either the emptyset @ or lies inside the goal G. Then clearly the goal must have
been attained, even if the initial guess Ko was wrong! Conversely, suppose that for
some state s;, the final knowledge state is non-empty and includes states outside of
the goal. If s; could have been a starting state of the system, then one cannot be sure
that the system has entered the goal. This establishes the following claim.

Claim 3.14 Consider a discrete planning problem (S, A,=Z,G) for which the full
sensing consistency requirement holds. Suppose the initial state of the system is
known to lie in some subset Ty C S. Suppose further that there ezists a guaranteed
strategy for attaining the goal in k steps if the initial state were actually known to
be in the set Ko, with Ko C I,. Imagine that the system ezecutes this strategy as
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if the initial knowledge state were indeed Ko. Let the ezecution trace be given by
Ay L Ay I - -+ Ag; I Then the system is guaranteed to have attained the goal if
and only if To; Ay; I Ay 55 A k € 6.

[Notice that Ko; Ar; I; A2; Iz; « - - ; Ax; I may be the empty set, if the initial state of
the system is not in Ko. However, the knowledge state Zo; Ay; Iy; Ag; Iz -+ -5 Ak I
must be non-empty, since the system is known to have started in the set Zy, and since
sensing is at least partially consistent.]

Proof. The claim follows from the discussion above, and the fact that

U ({sh 41 = K; 41,
€K

for any knowledge state K, by lemmas 3.1, 3.2, and 3.3. |}

As an aside, notice that the proof of the claim never made use of the fact that
the execution trace was the result of executing a strategy guaranteed to move Ko to
the goal. This suggests that the claim holds for any strategy, and indeed it does, but
this is not of use in this context.

Definition. Let us define the phrase the strategy is assured of reliable goal
recognition from K, to mean that any execution trace of the strategy, which
transforms Kj into a non-empty knowledge state within the goal, actually implies
goal attainment.

With the same hypotheses as the claim above, one obtains the following corollary.
The corollary is merely a restatement of the definition of reliable goal recognition.

Corollary 3.15 Suppose that a randomized strategy guesses that the system is in Ko,
and plans to execute the guaranteed strategy for Kg, even though the actual state of
the system may be in Io — Ko. The strategy is assured of reliable goal recognition from
Ko if and only if Tp; Ay; I Ag; Lo+ - -5 Ax; Iy C© G for all possible ezecution traces that
might occur for which @ # Ko; Ay; I1; Ao} Iy -+ A Ik € G.

[Observe that the collection of possible execution traces is the union over all possible
starting states in Z, of exe:cution traces that might occur when executing the
guaranteed strategy for Ky, not just the possible execution traces that might occur
when executing the guaranteed strategy for Ko knowing that the initial state is in
Ko. However, the corollary only requires consideration of those execution traces that
are consistent with Kp.]

The condition of this corollary forms the applicability condition for a randomized
strategy. If the condition is satisfied for all possible knowledge states K; that might
be guessed, then false goal recognition is avoided.

As an aside, observe that if one does implement the more accurate test to
determine whether To; Ay; I1; Ag; Iy - - - Ax; Ik © G, then corollary 3.15 is irrelevant.
The corollary really tells us the conditions under which a local test relative to the
guessed starting state Kj is sufficient to ensure global goal attainment.

- wwr——— —
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A couple of additional comments are in order. First, a quick reading of the
corollary suggests that goal recognition is only reliable if the entire possible starting
region I is guaranteed to attain the goal. If that were indeed true, all this discussion
would be absurd, since one could simply apply the guaranteed strategy applicable to
I, rather than Kj. In fact, however, the corollary merely asserts that any execution
trace starting from Ky, for which the final knowledge state derived from K, is non-
empty and lies inside the goal, must also place the final knowledge state derived
from I, inside the goal. It is quite possible that on a particular execution trace
the final knowledge state Ky; Ay; I1; Az; Ip;---; Ax; It is empty. In that case, the
result of applying the strategy to I, clearly need not achieve the goal. As we see
from claim 3.14, the goal might actually be attained, but this is not guaranteed.
Thus the randomized strategy would signal failure of its current attempt, based on
the recognition that it had guessed wrong initially. In short, there need not be a
guaranteed strategy for attaining the goal from Z,.

The second comment concerns the relationship of the corollary to Donald’s work
on Error Detection and Recovery [Don89). He, as we, was interested in executing a
strategy from some large starting region, although the strategy was only guaranteed
to attain the goal from some smaller subregion. The condition he placed on such a
strategy was that it terminate by either recognizing goal attainment or recognizing
attainment of a region from which goal attainment is impossible. The situation in our
case is slightly different. In particular, as we shall see, the randomized strategy will
actually loop over sev=ral attempts, on each making a new guess as to the effective
starting state. After all, we have assumed that the large starting region is covered
by a union of smaller regions, for each of which there exists a guaranteed strategy.
This is a more stringent requirement than that Donald asked of his starting regions.
Additionally, whereas Donald required his strategies to either recognize success or
failure, we have simply defined failure to be the lack of success. Indeed, it may
happen that the strategy terminates thinking it has failed when in fact the state of
the system is inside the goal. Our only requirement is that if the strategy thinks
that it has attained the goal, then indeed it has. This is a weaker requirement, one
that is niue casny saticfled. I is cucugh for our purposes, since on each iteration ot
the randomized strategy, there is some non-zero probability of guessing the correct
starting state, and thus some non-zero probability of terminating successfully.

3.9.5 Repeated Goal Reachability

The second issue that needs to be addressed concerns the behavior of the randomized
strategy upon failure.> Thus far we have merely asked that the strategy guess a
starting knowledge state and execute a strategy guaranteed to achieve the goal if the
guess is correct. If the guess is incorrect and the strategy fails to achieve the goal, then
one needs to worry about how to proceed. One possibility is that the new resulting
knowledge state at execution time is one of those for which a guaranteed strategy

3 As before, failure can have two meanings, either relative to the guessed starting region, or relative
to the entire starting region. Either meaning is acceptable. See section 3.9.2.
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exists. In other words, a non-blank entry appears in the dynamic programming table
for that knowledge state. Another possibility is that the new knowledge state is
the union of several smaller knowledge states for which guaranteed strategies exist.
More, generally, however, there may not be any way to proceed. This leads to a
second applicability condition.

Consider a k-column dynamic programming table. Suppose that the initial state
of the system is known to lie in some subset I, of the state space. Assume as before,
that there is a collection of at most n = |S| knowledge states that cover the set Zo,
from each of which there is a guaranteed strategy of k steps for attaining the goal.
Now let us go one step further. Consider the :** column of the table, and define D,
(for t = 1,...,k) to be the union of all knowledge states whose entries in this column
are non-blank. In other words, D; is the union of all knowledge states for which
there exists a strategy of ¢ or fewer steps guaranteed to attain the goal. [Note that
we have T, C 'Dk.] If ever the actual knowledge state K is a subset of the set D,
then it is possible to guess between a collection of knowledge states from which goal
attainment is possible. The guess involves at most n choices. If it involves exactly
one choice, then the strategy is in fact guaranteed to attain the goal. In general,
one must worry about false goal recognition, using now the knowledge state K in
place of I in corollary 3.15. An applicability condition can now be stated, which
simply says that for all possible execution traces the system always winds up in one
of the {'D.} In other words, no execution trace should ever enter a blank entry in the
dynamic programming table. This is quite a difficult condition to state generally in
any meaningful way, partly because one must now look at execution traces that may
be longer than k steps, and partly because the false goal recognition condition enters
into the picture. Instead we will state a weaker condition, then show how to satisfy
it with a very simple assumption.

Definition. Recall that a randomized strategy repeatedly guesses its initial
starting region K|, then executes some guaranteed strategy for attaining the goal from
K;. The execution terminates either with goal attainment or failure. We will refer to
each such guess and strategy execution as a single guessing loop of the randomized
strategy.

Definition. We will say that a randomized strategy may be reliably restarted
if, whenever it fails to attain the goal recognizably on a single guessing loop, it
recognizably lies within its initial starting region Z.

The following claim establishes a nice complement to corollary 3.15. To verify
that the strategy may be reliably restarted in general one of course needs to check
the condition of the claim for all possible knowledge states K; that the randomized
strategy might guess (recall there are at most n of them). The claim is essentially a
restatement of the definition of reliable restart, but with a slightly stronger condition.

Claim 3.18 Assume the hypotheses of claim 3.14, and suppose that the guaranteed
strategy for Ko is assured of reliable goal recognition from Ko. The randomized strategy
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may be reliably restarted if and only if Ty; Ay; I1; Az; Ip; - - - 3 Ak I C Iy for all possible
ezecution traces that might occur which fail to attain the goal recognizably and for
which Ko; Ay; I; Ag; Ip; -+ - ; Ax; I is either empty or contains non-goal points.

3.9.6 Observations and Assumptions

Notice that if a strategy both is assured of reliable goal recognition and may be
reliably restarted for all relevant knowledge states K; that cover Z,, then whenever a
single guessing loop of the randomized strategy is executed from the region I, it is
guaranteed to attain recognizably either the goal or again the region I, itself. This
condition is in appearance very similar to Donald’s EDR condition (see page 100 of
[Don89]), which insists that a strategy be guaranteed to attain recognizably either
the goal or a region, called the failure region, from which success is not possible. One
difference is that our failure region is the start region itself.

Another related difference is that the condition does not work in reverse. In other
words, the converse statement that recognizable attainment of the goal or the start
region implies reliable goal recognition and reliable restart is simply not true. After
all, if the start region is the entire state space, then any strategy is guaranteed to
attain recognizably either the goal or the start region, but the strategy need not
satisfy the condition of reliable goal recognition.

The failure of the converse statement suggests that verifying reliable goal
recognition and reliable restart are in general quite difficult. However, they are easily
satisfiable conditions if we make two special assumptions.

Assumption of Goal Recognizability. First, we will assume that the goal is
recognizable independent of any particular execution. This means that if the sensor
signals goal attainment then the goal has indeed been attained, and conversely, if the
goal is entered then the sensor will signal goal attainment.

Assumption of Covering Start Region.  Second, we will assume that the start
region for any guessing strategy is the entire state space. In general, one can relax
this assumption by considering only that portion of the state space that might ever
be traversed.

One final comment is in order. When the guessing strategy fails and decides to
guess anew, it need in general not guess between the ¢ - -sible knowledge states
that cover the starting region Zo, but only between those knowledge states that cover
the new start region T} = Ty; Ay; Iy; Ay Iy -« - 3 Ay Ik determined by the most recent
execution trace. This can sometimes speed up convergence. In particular, if I is
actually equal to one of the knowledge states for which a guaranteed strategy exists,
then the randomized strategy is assured of convergence on the next attempt.

T T TR T——
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3.10 Comparison of Randomized and
Guaranteed Strategies

Suppose one is in the fortunate situation of having both a guaranteed strategy for
attaining a goal and a randomized strategy of the type just discussed. One question
is whether it ever makes sense to use the randomized strategy. The answer is
yes, assuning that the expected convergence time for the randomized strategy is
significantly less than the convergence time for the guaranteed strategy. In order to
set up this comparison, let us suppose that the guaranteed strategy for the starting
state Iy is found in the £** column of the dynamic programming table, and let us
suppose that the guessing strategy is found in the k** column. Assume that there are
q knowledge states K,..., K, between which the randomized strategy guesses, and
suppose that the guaranteed strategies for these states converge in steps ki,...,kq,
respectively. In other words, the worst-case convergence time for the guaranteed
strategy for 7, requires ¢ steps, and the worst-case convergence time for K; requires
k; steps (1 =1,...,q).

If we assume that the randomized strategy always guesses between all possible
q states, then the expected time until convergence is bounded by Y"7_, k;, which in
turn is bounded by ¢gk. It is a little strange mixing these expected and worst-case
times, but the idea is similar to the example involving random key selection in the
introduction. Essentially, if ¢k is on the order of ¢, or larger, then it doesn’t make
much sense to use the randomized strategy. However, if ¢ k is considerably less than
¢ then it is probably a good idea to use the randomized strategy. In particular, if £
is exponentially large in the problem specification, and k is only polynomially large,
then it always makes sense to use the randomized strategy. This is because, as we

noted early in the chapter, the probability that the randomized strategy will require
t
more than ¢ attempts is less than (2;—') . Recall also that ¢ is bounded by n. It

follows that for fixed n, the strategy converges exponentially fast in the number of
steps. One may worry that as n gets large ¢ may also get large, in which case, (¢—1)/¢
approaches unity. This seems to imply that as n gets large one cannot guarantee fast
convergence. Notice, however, that if t > m ¢, where m is some integer and ¢ is large,
then the probability of the randomized strategy requiring more than t steps is less
than e~™, so convergence is still fast. In particular, in quadratic time the probability
of failure can be made exponentially small.

As an aside, consider how randomization by guessing relates to the labelling
scheme discussed earlier (see section 3.5). Essentially all non-goal states are assigned
the same label, namely the number &, while goal states are assigned the label zero.
Then the expected velocity at all non-goal states is at least —1/q, when averaged over
each step of a k-step strategy, and thus the expected convergence time is bounded
by k q. In some sense, by considering composite steps consisting of k basic steps, we
have transformed a non-deterministic problem into a two-state probabilistic problem.
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3.11 Multi-Guess Randomization

Thus far we have only dealt with randomization by guessing the starting state of the
system. In general, it is equally possible to consider sequences of several guesses.
In other words, when executing a strategy, at some point a knowledge state is
encountered that is the union of several smaller knowledge states. Instead of executing
a strategy applicable to the larger knowledge state, a system could simply guess
between the smaller states, then use strategies appropriate for each of these. In terms
of planning, the standard preimage or dynamic programming approaches continue to
apply, but with an additional operator. Call this operator SELECT. SELECT operates
as follows.

An Augmented Dynamic Programming Table

First, let us augment the dynamic programming table. Each column in the dynamic
programming table will contain three types of entries, namely BLANK, GUARANTEED,
and RANDOMIZED. The intuition is that BLANK and GUARANTEED are as before.
Specifically if the entry for a knowledge state K is a GUARANTEED entry then there
exists a tree of actions that is guaranteed to attain the goal assuming that the initial
state was indeed inside K. A BLANK entry implies, as before, that there is no such
strategy, and, now, also that there is no strategy involving random choices. The
RANDOMIZED label in the entry for a knowledge state K means that there is a tree
of operations that has some probability of attaining the goal. The operations involve
both standard non-deterministic actions and the guessing operator SELECT. It is
sometimes also useful to distinguish between different RANDOMIZED entries based on
the probability of success of attaining the goal by a particular sequence of guessing
operations. For a given knowledge state, this number is easily computed as the
minimum product of guessing probabilities along possible paths from that knowledge
state to the goal. The probability represents the worst-case probability of attaining
the goal by a sequence of actions and guessing operations. It does not take into
account goal attainment that is possible even when a guess is wrong. For this reason
the probability may considerably underestimate the actual probability of success, and
places into question its utility. Nonetheless, in some situations these probabilities
provide a useful lower bound for comparing different strategies.

Planning

And now for the augmented planning process. Suppose that the planner has
backchained to the k** column of the dynamic programming table, and is currently
considering the k + 1** column. First the planner fills in all entries using only the
standard non-deterministic actions. In other words, for each knowledge state K, if
there is an action A of the form A: K — K,,...,K,, and each of the K, has a non-
BLANK entry in the k** column, then the entry for K in the k+1* column may be taken
to be A. If there are several such actions A, then one may wish to distinguish between
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different actions by considering the labels of the entries for the knowledge states K
to which the action can transit. In particular, suppose RANDOMIZED entries actually
have probabilities of success associated with them. Then it makes sense to assign
the probability 0 to any BLANK entry, and the probablhty 1 to any GUARANTEED
entry. One can then associate with each action A a worst-case probability of success
(but recall that this may be an underestimate). Specifically, if p; is the probability
of success associated with the knowledge entry for K; in the kt* colummn, then the
probability of success p; for A may be taken as min;{p;}. If several actions A are
applicable at the current knowledge state, one can then select that action which
maximizes p;. In particular, if there is an action that only transits to GUARANTEED
states, then the planner should select it. Similarly, if all actions have worst-case
probability zero of success, then the planner should simply leave the entry for K
BLANK. Once an action has been selected, it provides a label and/or a probability of
success for the current knowledge state K.

Once the entries in the k + 1** column have been filled in in this way, the planner
next considers all remaining BLANK entries in that column. In particular suppose K
is a knowledge state whose entry is BLANK. If the knowledge state can be written as
a finite union of non-BLANK states {K},..., K|}, then the SELECT operator comes
into play. It provides a transition from A to one of the K, via randomization. The
entry for K in the k + 1** column becomes a RANDOMIZED entry, with worst-case
probability of success given by %min,-{p;}, where p, is the worst-case probability of
success for state K; in the k+1° column. Again, the planner may wish to use SELECT
to point from A to a collection {K;} of minimal size, or perhaps to a collection that
maximizes the worst-case probability of success.

As usual, one must ensure that reliable goal recognition and reliable restart are
possible.

Execution

At run-time, suppose nominally there are k steps remaining and the current knowledge
state is K. If the entry for K is BLANK, then execution of this particular guessing
loop stops, and a new loop at the beginning of the table is restarted, if possible. If the
entry for K is not BLANK, but contains an action A, then the system executes that
action, thereby proceeding to the k — 1** column. If the entry for K is RANDOMIZED
and thus contains a SELECT operation, then the system randomly chooses one of the
{K.} specified by this SELECT operation, whereupon the action stored in the entry
for the selected K; is executed. It ever the goal is attained, execution stops. Starting
or restarting the guessing loop entails determining an initial knowledge state by
performing a sensory operation and intersecting the resulting sensory interpretation
set with the set Ty, in which all motions are assumed to occur. An alternative is to
restart the guessing loop by considering the set ' =TI Ay L Ay Ly -+ A I C
T, in place of Ty, where I is the initial knowledge state at the start of the i** iteration
of the guessing loop. This procedure preserves full history independent of any guesses,
and thereby may limit the number of states between which the strategy must guess
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on each new iteration.

Examples

For an example of multi-level guessing in the continuous domain, see the example
of figure 4.8 on page 219. For a simpler example consider again the discrete
approximation to the peg-in-hole problem of figure 2.13 on page 85. Suppose that
the peg does not just fall into the hole once it is above the hole. Instead, the system
first must ascertain that the peg is above the hole, then try to push down. If sensing
is poor so that the system cannot decide on which side of the hole the peg is located,
then the system may have to resort to a multi-level guessing strategy. In particular,
the system first guesses on which side of the hole the peg is located, then moves in the
goal direction specified by this guess. Next, the system repeatedly guessc ‘hether it
has moved the peg above the hole, and either pushes downward if it guesses “yes”, or
continues its motion if it guesses “no”. If the system guesses correctly each time, then
the peg will enter the hole. Let us assume that this success is recognized by some
other means (for example, by considering the height of the peg above the hole). One
could imagine removing the second set of guesses in this strategy, and instead always
pushing down after each move. If this is feasible it will be generated as a strategy by
the dynamic programming approach. However, perhaps pushing down disturbs some
other parameter of the system whenever the peg is not above the hole. For instance,
if the peg is gripped by a robot hand. the fingers might slide, and the peg migh. have
to be regrasped from some initial configuration. In this case it might be better not to
push down after each attempt. Another possibility is that there are multiple holes,
so that pushing the peg down into the wrong hole requires extracting it again. In
any event. both tvpes of strategies may be generated by the dynamic programming
approach.

Randomization Can Solve Nearly Any Task

Once one has an operator such as SELECT, one can solve any task for which there
is some chance of attaining the goal! As usual, this assumes goal recognizability and
reliable restart. In order to see that any problem is solvable, first recall claim 3.4.
This claim tells us that whenever it is “certainly possible” to move from any state
to the goal, then there actually exists a guaranteed strategy for attaining the goal,
assuming a perfect-sensing function. Furthermore, this strategy requires at most
r = |S| — |G| steps. A guessing strategy may thus be constructed. The strategy
simulates the perfect sensor by guessing the actual state of the system at each step of
the perfect-sensing strategy, before deciding on the next action to execute. Of course,
the worst-case expected execution time of such a randomized strategy may be quite
bad. In particular, the probability of guessing the state correctly during all stages
of an r-step strategy may “e on the order of 1/r!. Thus the worst-case expected
execution time is O(r r!).
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3.12 Comments and Extensions

3.12.1 Randomization in Probabilistic Settings

The knowledge states in the probabilistic setting are probability distributions on the
underlying state space. In other words, each knowledge state is an ordered n-tuple of
non-negative numbers that add up to one, where n = |S]|.

If, as we have assumed, all of the underlying states are connected to the goal,
then for each state one can determine a sequence of at most r transitions leading
from the state to the goal. Here r is the number of non-goal states, as usual. The
probability of actually executing this sequence is at least equal to the product of the
probabilities along each of the arcs. For each state one can easily determine (using
Dijkstra’s algorithm) a sequence of transitions of maximum probability. A randomized
strategy of the flavor discussed for the non-deterministic case would consist of guessing
the underlying start state of the system, then executing a sequence of actions
corresponding to the sequence of transitions thus determined. The probability of
attaining the goal is then at least equal to the probability of guessing the correct
start state, multiplied by the probability of actually executing the sequence leading
from that state to the goal. This probability is bounded from below by 2 p", where
p is the smallest probability appearing on any arc in the r sequences of transitions
leading to the goal. This number may be quite small in general. Of course, if there
exists a guaranteed strategy for attaining the goal, assuming perfect sensing, then
there exists a guessing strategy just as for the non-deterministic case above. For both
types of randomized strategies. it is assumed that the goal is reliably recognizable.

In general. however. if one has probabilities available for the actions and sensors,
then it does not make much sense to randomize in the way one might do for the non-
deterministic case. In particular. the probability of executing a sequence of transitions
from a state to the goal is often a severe underestimate of the actual probability of
attaining the goal. This was made clear by the examples on random walks. Instead of
constructing strategies that randomize by guessing, it is generally more useful either
to construct strategies that make local progress or to solve the complete Markov
Decision Problem and try to minimize the expected time to attain the goal.

There is one special form of randomization that does appear fairly directly in
the probabilistic setting. This consists of moving the state of the system in order
to change the probability distribution over the state space, say to equalize it. This
randomization is useful for some tasks where it is desired to meet some action’s
preconditions at least probabilistically. The main purpose of this randomization in
the domain of manipulation is to blur environmental details. A natural setting is
in tasks that involve geometric uncertainty. An example is given by a peg-in-hole
problem in which the location of the hole is not modelled accurately. By ranciomizing
the peg’s position near the hole, a robot can in many cases ensure that the.e is a non-
zero probability of starting from a location from which goal attainment is possible.

The parts-sieving example of chapter 1 tried to make a similar point. In that
example the geometric uncertainty was in the exact shape and size of the sieve
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elements.

In general, given an action (or composite action consisting of several actions), that
is to be repeated over and over, one can determine the steady state distribution over
the state space using the theory of Markov chains as discussed in section 3.4.1. One
can compare different actions in terms of the final distribution attained, and in terms
of the expected time until steady state is achieved.

In some cases, the actions required to attain a particular randomization may be
clear from context. For instance, in order to achieve a uniform distribution over a
bounded one-din ensional lattice, it suffices to perform a standard one-dimensional
random walk, with reflection at either ends of the lattice. There has been considerable
work on estimating the time required for convergence to a uniform distribution for
random walks on lattices (see for instance the article on card-shuffling [AD]). Related
work dealing with random walks on graphs includes [GJ], [AKLLR], [SJ], [CRRST],
and [Z].

3.12.2 Randomization:
State-Guessing versus State-Distribution

The previous sections have indicated how a system can probabilistically attain a
goal by randomly choosing between several guaranteed strategies, whose applicability
conditions individually cannot be met, but which are met when taken as a disjunctive
collection. This form of randomization has a different flavor than the randomization
indicated in the early sections of the chapter, namely in the gear-meshing and parts-
sieving examples (see also section 1.2). In those tasks, there was a single action
that would attain the goal, given that the action’s pre-conditions were met. The pre-
conditions could not be satisfied with certainty, but could be satisfied probabilistically
by randomly moving the system about, such as by twirling the gears or shaking
the sieve. The randomization in these cases seems more direct, since it actually
randomizes the state of the system, than does the randomization achieved via
guessing. However, these two forms of randomization are actually very similar. In
particular, suppose that some knowledge state K is a precondition to action A, where
action A is guaranteed to achieve the goal G. Now suppose that the initial state of the
system is known only to lie in some set T, that contains K. The state-distribution
approach consists of randomizing the states within Z,, so that there is some non-
zero probability of actually being in the set K. [If it is true equalization, then that
probability is |K|/|Zo].)] This means in particular that it is “certainly possible” to
reach K from any state in Iy — K. Thus there must be a perfect-sensing strategy for
attaining K, and hence a randomization by guessing strategy for attaining G, from
any point in Zo. [As usual, it is assumed that the goal is recognizable reliably and that
the guessing strategy may be restarted reliably.] Conversely, suppose that there exists
a guessing strategy for attaining K. Then in some sense there exists a strategy that
randomizes the state of the system. After all, if one considers all possible guesses
in the guessing strategy, these define a random collection of action sequences that
randomize the state of the system. However, it need not be the case that there is a
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well-defined distribution over Ty, nor that all states of Z, are necessarily reachable.

More generally, the set K may not be known, of course, which is why true
randomization via state-motion may be required. Formally, however, this presents
no problem in drawing a connection between randomization via state-distribution
and randomization via state-guessing. This is because one can often augment
the underlying state space with an extra dimension that encodes the parameters
whose unknown values define K. See [Don89) for further details on handling model
uncertainty. In other words, one may not know whether it is possible to get from
some state to the goal under some action, so sometimes one guesses that it is possible
and executes the action, whereas at other times one guesses that it is not possible,
and instead moves to a completely different state.

3.12.3 Feedback Randomization

In the previous guessing strategies extensive use was made of history. Certainly
history plays a major role within each of the guaranteed strategies. Indeed, new
knowledge states are formed from old ones by forward projecting the effect of actions,
then intersecting these with sensory interpretation sets. Similarly, each time the
guessing strategy randomly selects a particular knowledge state, it is effectively
assuming a particular history. All actions following this random selection update
knowledge states in the usual manner, so that the derived history is correct in so far
as the random selection was correct.

The process of guessing history can be extremely useful when a strategy depends
on extensive history to prune possible sensory interpretations. If sensing uncertainty
is large, it might otherwise never be possible to select the correct motions to perform.
By guessing some of this history, goal attainment is possible, at least, if the guess is
correct. On the other hand, in some cases, if the guess is incorrect, it may take several
steps of execution before an inconsistency is detected or before failure to attain the
goal terminates the loop. In particular, in the case of no sensing (except for goal
recognition), a guaranteed strategy that has been randomly selected may have to run
its full course before the system can recognize goal failure. For instance, imagine
that one has the diagram for a maze in a cave, but is blindfolded (and not allowed
to purposefully feel one’s way along the walls of the cave). So sensing is very limited.
Suppose, however that one can turn fairly accurately and can measure distance by
walking fairly accurately, so that one can actually follow the map well, based purely
on dead reckoning. In other words, control and thus history are very good. Thus, if
one knows one’s starting position or can guess it fairly accurately, then one has a good
chance of getting out of the cave quickly, whereas if one can only guess one’s starting
location with enormous uncertainty, then the time required may be proportional to
the size of the cave times the time required to execute a single attempt to exit the
cave.
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Using Current Sensed Information Only

An alternative to retaining history in updating the knowledge state after each motion
is to simply use the state of knowledge returned by the current sensory value. More
generally, the constraints imposed by one’s hardware or timing considerations may
require that one design strategies whose actions are based solely on current sensed
values, and not on history. For this reason it is natural to consider approaches for
synthesizing simple feedback loops.* Consider the representation of actions. Suppose
that the effect of an action A on knowledge state X, is K,, and that the range of
possible sensory interpretation sets associated with K, is Z(K;) = U,ek, =(3) =
{AII, I,---,I;}. In the framework developed thus far, one models the induced action
A as

A: K, — KL K?,... K,

where K3 = K, I;. In a framework without history one models the action simply as

/i: 1\’1 land ]1,]2,.-.,1(.

The first expression models history, the second only models possible sensing
information. Thus the only knowledge states that are relevant are those corresponding
to possible sensory interpretation sets.

Clearly, fewer tasks are solvable in a guaranteed sense with this type of approach,
since it is in general more difficult to constrain the apparent state of the system.
From a probabilistic point of view, solvability has not changed. This is because the
existence of a randomized strategy depends only on goal reachability, a condition
that may be checked by determining whether a perfect-sensing strategy exists. For
a perfect sensor, history adds no extra information. Of course, once one tries to
simulate the perfect-sensing strategy using an actual sensor and a guessing strategy,
the quality of one’s knowledge states determines the expected time until the goal
is attained. Four a purely sensor-based system, that is, a system without history,
although all tasks are still solvable probabilistically, the expected convergence time
will in general increase.

As an example consider a simple peg-in-hole problem. Either the two-dimensional
peg-in-hole of figure 2.2 or the abstraction of the three-dimensional peg-in-hole
discussed in section 1.1 are possible examples. A perfect-sensing strategy might
consist of moving straight towards the hole. However, if there is sensing uncertainty
and the system does not retain history, then it will become confused near the hole.
Instead of relying on accurate information, the system effectively must guess where
it is located. This manifests itself in the execution of a random action. The
difference between history-based and simple feedback loops is particularly striking
in the example of figure 2.2. In this example the motions are one-dimensional.
Thus a randomized strategy that retained history could simply make a single guess,

*Simple feedback refers to the feedback of current sensed values without retaining past sensed
values.
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executing a long motion to attain the goal. Should failure occur, the strategy would
then possess enough information to direct it towards the goal accurately. However,
a simple feedback loop that does not retain history would make repeated guesses,
effectively executing a random walk on one of the edges near the hole until it attained
the goal. Thus in this example the difference between retaining history and only
considering current sensory information manifests itself as the difference between
linear and quadratic expected convergence times.

Using the full sensory interpretation set at each step rather than intersecting it
with past history has at least one desirable characteristic, namely it preserves truth.
In contrast, a guessing strategy that assumes a particular history need not preserve
truth. Indeed the truth is fudged in order to provide a minimum probability of success.
However, in some cases, namely those in which an adversary cannot force indefinite
failure, and in which progress towards the goal is possible on average, a feedback
loop based on current sensed values can provide reasonable convergence times while
preserving accurate knowledge at each step of the strategy.

Progress Measures

One nice property of a perfect-sensing plan is that it places an implicit progress
measure on the underlying state space. This was made explicit by claim 3.12. Such
a simple progress measure on the underlying state space is not as easily provided by
plans that involve general knowledge states, simply because a state may be a member
of several different knowledge states that have different labellings. Only in the perfect-
sensing case Is there necessarily a unique labelling of states. This labelling plays the
same role that the duration labels did in the Markov chain case. We observed earlier
that the Markov chain model applied even in the imperfect-sensing case, so long as
the action taken at any time was solely a probabilistic function of the state of the
system (in particular, time and history invariant). A similar statement applies in the
non-deterministic case, so that it makes sense to think about progress measures even
with imperfect sensors. We alluded to this in section 3.6, but now is a good time
to take a closer look. The discussion should tie together the concepts of progress
measures and randomization by guessing in the setting of strategies that rely purely
on current sensory feedback and not on history.

Feedback with Progress Measures

Suppose the collection {S;}/_, is given as per claim 3.12 for some discrete planning
problem with non-deterministic actions. Let the label for each state s simply be the
index j of the unique set S; that contains the state s. Define, as in section 3.6, the
worst-case velocity v, , relative to some action A at some state s to be the maximum
possible change in labellings, where the sign of the change is significant. An action is
said to make progress at a state s precisely when v, , is negative.

Now consider how a simple feedback strategy operates. At any instant it has
available some sensory interpretation set I. Given this sensory information the
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strategy executes some action A. We are assuming that the choice of action A depends
only on the sensory information and not on any hidden state variables that encode
history or the passage of time. Thus A is either uniquely determined by I or chosen
randomly from a collection of actions that is uniquely determined by /.

If one wishes to ensure that at each step the strategy makes progress relative
to some labelling, then it must be the case that all non-goal states s € I transit
to a state with lower label when A is executed, and all goal states remain in the
goal. This in turn implies that there is actually a guaranteed strategy for attaining
the goal, assuming that the goal is reliably recognizable once entered. Furthermore,
the strategy converges in no more than £ steps, where £ is the highest possible label
assigned to a state. The guaranteed strategy operates simply by executing that action
A that ensures progress for all states in I, whenever the sensory interpretation set is

I

Planning Limitations

Before we comment on the generality of this approach, let us observe that even
though there exists a guaranteed strategy whenever progress is ensured for all possible
sensory interpretation sets, it need not be the case that a planner that only considers
knowledge states corresponding to sensory interpretation sets can actually construct
this strategy. This is because some notion of history is required in order to recognize
convergence of the strategy, even though the strategy itself does not make use of
history. In particular, the planner may not te able to synthesize the relevant progress
measure.

For a simple example, consider figure 3.18. There are four states and two actions.
Action A, is guaranteed to move state s; to the goal sg, while it moves state
s3 non-deterministically either to state s; or state s;. It leaves all other states
unchanged. Similarly, action A; is guaranteed to move state s, to the goal, while
non-deterministically moving state s; to either s, or s;. Suppose that the set of
ser t values is given by three possible interpretation sets, namely {s,s3}, {s2, 53},
and {sg}. So goal recognizability is ensured.

This example might be an abstract version of the two-dimensional peg-in-hole
problem of figure 2.2, with an additional state corresponding to the placement of the
peg in free space. The analogous sensing would be to assume that the system can
distinguish on which side of the hole the peg is located, but that the system cannot
decide whether the peg has made contact with a surrounding edge, as opposed to
being in free-space above the hole.

A guaranteed simple feedback strategy for attaining the goal is of the form:

o If the sensory interpretation set is {s;, 3}, then execute action A;.
o If the sensory interpretation set is {s;, s3}, then execute action A,.

o If the sensory interpretation set is {s;}, then terminate successfully.
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State Diagram

Sensory Interpretations

S; S, S, 8, Sg

Figure 3.18: For this state diagram and the collection of possible sensory
interpretation sets, there exists a guaranteed strategy for attaining the goal.
Furthermore, the strategy does not require history to execute. However, a
backchaining planner that ignores history cannot generate the strategy. [The sensory
interpretation sets are indicated by rectangles surrounding the states.]
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The strategy is guaranteed to succeed because at each step it ensures progress relative
to a progress measure that labels sg with 0, s, and s, with 1, and s3 with 2. Observe,
however, that if a planner only considered the three knowledge states given by the
sensory information, then it could not backchain even one level. This is because,
for example, there is no action that guarantees that the knowledge state {s;,s3}
is transformed into either of the other two knowledge states. Of course, a planner
that made full use of history would be able to synthesize a guaranteed strategy for
attaining the goal.

More generally, consider a strategy that only uses current sensory feedback at
execution time, but is guaranteed to converge to a goal because it is assured of local
progress relative to some labelling. Then there need not be a solution visible to a
planner that only considers knowledge states that are possible sensory interpretation
sets, but there always will be a solution visible to a planner that considers full
history and sensing information (this, in the preimage setting, is a consequence of
Mason’s completeness result [Mas84]). After all, the history available to the execution
system (and the planner) must be at least as constraining as the implied history of
the progress measure. However, a planner that uses full history in synthesizing a
guaranteed strategy need not find a strategy that is necessarily executable using only
a simple feedback system. This is because the planner may specify different actions
for two knowledge states that can give rise to the same sensory interpretation set at
run-time. Some additional mechanism would be required to ensure that a stationary
strategy based purely on current sensory informatiow is derivable from the guaranteed
strategy suggested by the planner.

As an example, suppose in the previous figure there is a third action A3 whose
effect on state s3 is to move non-deterministically to one of the states s; or s;. All
other states are left unaffected by this action. Then a possible backchaining table for
a guaranteed strategy might be of the following form. [Notice that not all knowledge
states are needed in determining a guaranteed plan. For instance, if we assume initial
sensing, then the knowledge state {s,, 3,33} is easily ruled out.]

Steps Remaining

2 1 0
43 {31, 33}

A {82 83}

- . ’ Knowledge States
A‘l /}1 {81} 8
A; A, {32}
stop stop stop | {sg}

Actions guaranteed to attain the goal.

Now observe, that at run-time, if the actual state of the system is s;, then the sensor
will return the interpretation set {s1,s3}. The table would say to execute A3 and
sense, but, of course, that is not the right thing to do in state s;. Similarly for
s2. If by chance the planner had returned the same table, but with A, and /iz in
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the appropriate places instead of Aj, then a consistent stationary simple feedback
strategy would have been obtainable. The problem is that just running the planner
does not ensure such a policy.

Progress as a Generalization of Guarded Moves

This discussion indicates that progress measures form a useful intermediate planning
approach, situated between strategies that employ periect sensing and those that
rely on full history. In many cases the progress measure is naturally derived from
the perfect-sensing strategy, although arbitrary progress measures are imaginable.
The progress measure approach is a natural generalization of those strategies that
execute a single action over and over until som~ sensory condition is met (see the
discussion on guarded moves on page 46). For insiance, the underlying primitive of the
preimage methodology is a single command that is executed until some termination
condition is true (see chapter 4). Moving down until one feels a force of collision is a
typical application of such a primitive action. In the discrete context this primitive
corresponds to moving through a progression of states under the repeated application
of a single action, until some goal is attained. The progress measure is simply the
distance moved, or perhaps the change in some coordinate. The notion of progress
is of course more general than progress relative to a single action, and much of this
chapter has been concerned with generalizing that notion. The more general notion
involves categorizing states by how far they are from the goal in terms of how many
actions may be required maximally to attain the goal, as discussed in claim 3.12.

Guessing, Whenever Progress is not Possible

Unfortunately, it may not always be possible to ensure that progress is made at every
state for every possible sensory interpretation set that might arise while the system
is in that state. In these cases it is useful to randomize by guessing as before. In
other words, if some sensory interpretation set is of the form I = U/, K;, such that
there are actions A; that cause every state in K; to make progress, then the system
should randomly choose one of the A; to execute. This guessing is similar to the
guessing employed in the randomiza‘ion of section 3.9. The difference is that now the
knowledge state of the system is the most recent sensory interpretation set, rather
than a state derived from previous guesses and actions. One imagines that in the
worst case each step of the strategy requires an n-way guess. Such could be the
case in a sensorless task (sensorless except for goal recognizability). However, in that
setting one would probably do well to employ some form of history.

Sensing and the Speed of Progress

Let us discuss the role of sensors in determining whether progress is possible at a given
state. Consider a state s and its collection of possible sensory interpretation sets =(s).
If for all sensory interpretation sets I € =(s), it is possible to select an action .4; that
ensures progress independent of the actual state § € I, then in particular it is possible
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to ensure progress at s. Furthermore, if one considers the sensor to be adversarial,
then one may assume that the sensor always forces that interpretation set I for which
the action A; makes the least amount of progress at state s. Thus it makes sense to
define the worst-case velocity at s to be

Vy = Max v
8 IGE(J) A],J’

which agrees with the definition (3.20).

By similar reasoning, if the sensor is adversarial, and there is some possible
interpretation set I € =(s) for which progress is not ensurable independent of the
actual state giving rise to I, then progress may not be guaranteed at s. Instead
the action to be executed is chosen probabilistically from some collection A; =
{Ay,- -+, Ag} that corresponds to the collection of knowledge states { K;} that cover
I. In this case, it makes sense to define a worst-case average velocity, namely as:

1
Vg = 1[2%}:) {m Z 'L’A.s} .

A€EA,

The point is that whenever the system is in state s and sensory interpretation
set | occurs, on average the guessing strategy will make progress that is at least
—~(X Aca, V4.s)/|Arl. Thus an adversarial sensor can only try to minimize this
quantity by selecting sensory interpretation sets I that behave poorly. Once, again,
if v, 1s negative for all states and bounded away from zero by v, then the worst-case
average execution time will be bounded by the maximum label divided by —v.

This process generalizes as one changes adversarial actions to probabilistic actions,
and/or adversarial sensors to probabilistic sensors, until one eventually gets a process
resembling the Markov chains discussed earlier in this chapter.

3.12.4 Partial Adversaries

In the discussion on non-deterministic tasks thus far, it has been assumed that an
adversary can always force the worst possible motion or sensing information at any
instant at any state. However, for some physical tasks the non-determinism specified
in the actions and sensing function is due to a paucity of knowledge in modelling
the system, rather than the existence of an actual adversary. In other words, the
actual transitions or sensor values obtained depend on some set of parameters whose
exact values are unknown, and hence are modelled as non-deterministic uncertainty.
The actual system behaves in a manner consistent with a particular instartiation of
these parameters. This means that the range of transitions possible in response to an
action and/or the sensory interpretation sets obtained from a sensor are coupled at
different states of the system. In short, if an adversary can choose a bad transition
at some state, this may reflect a particular instantiation of the unknown parameters
that precludes an independent worst-case choice at some other state.

As an example, consider the case of a sensor with an unknown bias. Specifically,
suppose that there is a sensor, that returns a sensed position z* that lies within some
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error ball about some unknown bias, denoted by B,(z + b). The notation is meant
to convey the idea that the actual state is z, and that the error ball is centered at
a point that is offset from z by some bias 4, and has radius e. This notation makes
a lot of sense in a vector space such as ", in which the error ball might represent
the support of some distribution function describing the possible sensor values (see
also the examples of sections 2.2.2 and 2.4). Conceptually, we can imagine a similar
situation for discrete tasks. If the bias b is known, then whenever one sees a sensor
value z*, the resulting sensory interpretation set implies that the actual state of the
system must lie in the set B(z* — b). However, if the value of b is not known exactly,
but can merely be bounded in magnitude, say as [8] < bmax, then one can merely
assert that the actual state of the system lies in the set B.4s,,,(z*). One would
model this non-deterministically by saying that the sensing function = can return for
each state z one of a collection of error balls of radius € + byax, namely the collection
{Bess,,..(z*)}, as z* varies over B4y, (z). This suggests that if the state of the
system is z, then an adversary could choose any sensor value z* that lies within the
error ball B4y, . (). Of course, that is not true. An adversary can merely choose
any sensor value from the range B (z + b), for some actual but unknown b.

Now consider a task in which the non-determinism is so great that there is no
strategy that ensures progress at each state, relative to some labelling. However,
suppose further that there exists an unmodelled parameter, such as the bias b in the
previous example, whose instantiation would permit progress for a large number of
states. In other words, given a particular instantiation of this parameter one can
devise a strategy for which the mix of states at which progress is possible and states
at which progress is not possible is sufficient to ensure goal attainment within some
time bound. If this strategy is actually independent of the particular instantiation of
the unknown parameter, then the strategy is assured of goal attainment within the
desired time bound.

An example is given again by the sensing bias mentioned above. If the task is
to move to some region based on sensor values, then for certain approach directions
the bias will aid in attaining the goal, while for other approach directions the bias
will hinder attainment (recall the peg-in-hole example of section 1.1). One can take
advantage of the bias, without knowing its true value, simply by executing a strategy
of the type discussed in this section. Specifically, whenever the system can make
progress towards the goal, it does so, and otherwise it executes a random motion.
The random motion ensures that if the system is in a region in which the bias is
precluding sensory interpretation sets that ensure progress towards the goal, then
eventually the system will either attain the goal or drift out of that region and into
another region within which the bias facilitates goal attainment.
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3.13 Some Complexity Results for
Near-Sensorless Tasks

In this section we consider a special form of the discrete planning problem, namely one
in which the sensors provide no information other than to signal goal attainment. We
shall refer to such problems as near-sensorless. Sensorless tasks form an important
subclass of the set of robot tasks. Mason (see, for example, [Mas85] and [Mas86]) has
studied these problems extensively. The motivation for studying sensorless problems
stems from the realization that almost all tasks involve some operations in which
the mechanics of object interactions dominates any informational content provided
by the sensors. For instance, in grasping or pushing objects, even if sensors are
available to provide a general sense of the object’s behavior, the behavior of the
object at the instant of contact tends to lie below the resolution of the sensors. Thus
it is important to understand the behavior of objects, and the manner by which
one can control them, in the absence of sensory information. [Brost86] and [Pesh]
have further explored sensorless grasping and pushing. [MW], [EM] and [Nat86] have
looked at other tasks that are amenable to sensorless solutions, such as the problem
of unambiguously orienting an object given complete uncertainty as to the object’s
initial configuration, and [Wang] has studied extensively the impact problem.

In terms of the previous discussion in this chapter, we have seen that tasks in
which sensing is perfect can be solved very quickly. For fixed control uncertainty,
one may thus view sensing uncertainty as the devil that confounds one’s guaranteed
strategies. Indeed, randomized strategies were formulated precisely as a means for
pretending to reduce sensing uncertainty, by simply guessing the state of the system.
that is. by guessing the correct sensor value. Thus it is natural to look at the extreme
case in which there is no sensing whatsoever. However, in order to satisfy the goal
recognition criterion, we will insist that the goal be recognizable. In short, there is
some sensing, but it is limited to deciding whether or not the goal has been attained.

In this section we will first briefly outline how the general backchaining planners
discussed earlier specialize to the sensorless case, then indicate that sensorless and
near-sensorless tasks are essentially equivalent from the point of view of generating
guaranteed strategies. The main thrust of this section, however, is given by three
examples that indicate the complexity of planning with and without randomization.
We know, of course, from [PT] that planning solutions to discrete tasks in the absence
of sensing is NP-complete. Specifically, for probabilistic problems in which there are
costs associated with transitions, the problem of deciding whether or not there is a
sensorless solution of a fixed number of steps that incurs zero cost is NP-complete.
The three examples in this section elaborate on this type of result. Specifically, we
will look at non-deterministic problems, and merely ask for the existence of a solution,
not the existence of an optimal solution. This is equivalent to assigning costs that are
either zero or infinite, depending on whether the goal is attained or not. Furthermore,
we are interested in the comparison between guaranteed solutions and randomized
solutions.
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All three examples are abstract examples on graphs. Whether these can be
actually realized by physical devices is not investigated. However, at the end of this
section we indicate a physical device that has some of the same properties as the first
example. The first example demonstrates a task for which there exists a guaranteed
strategy, but which requires exponential time to plan and execute. In addition, there
exists a randomized strategy that only requires quadratic expected time to attain
the goal. This example indicates that some problems can actually be solved more
quickly by randomized strategies than by guarunteed strategies. The second example
indicates that not all problems can be solved juickly by randomization. And the
third example shows that the particular planning approach used may investigate an
exponential number of knowledge states even when the number of plan steps is fixed.

3.13.1 Planning and Execution

Let us briefly outline how a system might plan solutions to tasks in the sensorless
and near-sensorless settings. Towards this goal, it is useful to consider the effect
that actions and sensing operations have on knowledge states. Recall the notation of
section 3.9.

Suppose that a system is initially in knowledge state K and suppose that at
execution time a sequence of actions {A;,...,Ax} is executed yielding a sequence
of sensory interpretation sets {I;,...,Ix}. The final knowledge state resulting from
this particular execution trace is given by K; Ay; Iy; - - ; Ag; I. In general, of course,
a plan might specify a decision tree, so that the actions executed are themselves
functions of the observed sensory information. In the sensorless case, the sensing at
each stage provides no additional information, so one can write the execution trace
as K:A,;: 8- Ax; S. In particular, it is possible to decide before execution whether
or not the resulting knowledge state is inside the goal set G.

This simplifies planning greatly. It means that all actions may be viewed as
deterministic transitions in the space of knowledge states. Recall that in converting an
action on the underlying state space into an action in the knowledge space, it was only
the intersection with possible resulting sensory interpretation sets that introduced any
non-determinism. (See page 143.) Backchaining using dynamic programming thus
entails determining whether there is a path from K to G in the directed graph whose
states are knowledge states and whose arcs are the possible deterministic transitions
specified by the actions. [This was essentially the approach taken by [EM] and (MW]
in planning sensorless orienting strategies.] In short, a guaranteed strategy consists
of a linear sequence of actions, not a general decision tree.

In the near-sensorless case each of the sensory interpretation sets I; is either the
whole non-goal space $ = S — G or the goal set G. If we assume that an execution
trace stops once the goal is attained, then each successful execution trace is of the
form K;A;;8: A28 Av1; S5 A6 C 6. Clearly, in this case the actions are
indeed functions of the sensory information. In particular, the number of actions
executed depends on when the goal is entered, an event that is only determined in a
non-deterministic fashion at execution time. However, as in the sensorless case, for a
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General Decision Tree

Sense
Act

Sensorless
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Figure 3.19: Decision trees for different types of strategies.
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guaranteed strategy there is a definite sequence of actions that will be executed if the
system does .ot enter the goal. Said differently, the decision tree is not really a general
tree, but rather a linear sequence with ope step branches at each step corresponding
to early goal attainment. See figure 3.19.

In the space of knowledge states all actions are thus either deterministic or non-
deterministic with two possible target states. In particular, suppose K is a knowledge
state and A an action. If the forward projection F4(K) contains no goal states then
one has a deterministic transition A : K +— F4(K). Otherwise, one either has a
non-deterministic transition A : K — Fy(K) — G,G; or complete goal attainment
A : K — G. Again, planning by backchaining corresponds to determining a path
from K to G in a directed graph. As before, the states of the graph are the knowledge
states. The arcs are simply the non-sensing transitions specified by the actions. This
means that there is an arc labelled with A directed from K to F4(K) — G whenever
F4(R') contains at least one non-goal state, and otherwise there is an arc directed
from A to G labelled with A. A sequence of such directed arcs leading from A to G
represents the longest possible execution trace of the guaranteed strategy for attaining
the goal.

One sees then that planning in the sensorless and near-sensorless settings are
very similar. In the sensorless case one seeks a sequence of actions {A,, A,,..., A}
such that K A;S: 45,8+ 4x; S C G, while in the near-sensorless case one seeks
a sequence of actions such that K; A S Ay S A S CG. Here S = S—G is the
set of non-goal states. In the sensorless case the entire sequence of actions is always
executed. while in the near-sensorless case the entire sequence is only executed in the
worst case.

3.13.2 Partial Equivalence of Sensorless and
Near-Sensorless Tasks

In the previous discussion, we saw a strong similarity between sensorless and near-
sensorless tasks in terms of the structure of guaranteed solutions. The following
paragraphs will make this similarity more precise.

Consider a discrete planning problem (S,.A,=,G) in which the sensing function
returns no information. In other words, =(s) = {S} for every state s. Now consider
a modified problem (S'..-" =/ G’), for which the set of states is augmented by one
new state sg, which now bccomes the goai state. In other words ' = S|J{sg} and
G' = {sc}. Furthermore. define A’ essentially to be just .4 with one additional action
Ag, whose effect we will describe shortly. In particular, for any action 4 € A, let A
have precisely the same effect on states in S as before, and let its effect on the new
state sg be a self-transition. In other werds, A : s — sg. The additional action
Ag 1s designed to move any goal state in the old system into sg, and otherwise non-
deterministically move to any one of the states in S. In other words. if the states of
the original system are given by S = {s;,---.sn}, with goal states G = {s;,---.3,},
then Aq 1s specified by:

- = . r———




3.13. SOME COMPLEXITY RESULTS FOR NEAR-SENSORLESS TASKS 177

8y = 3G

Sr41 FF S1y...,8n
Sp F* S1,...38n
8g WM 8¢

Finally, define a new sensing function =’ that gives partial sensing. In particular,
= permits goal recognizability in the new system. This is modelled as ='(s) = {S}
for every s € S, and Z'(s¢) = {{sc}}-

Let us compare solutions to the two problems. Suppose that the unmodified
system starts in knowledge state K and that there is a sequence of actions Ay, ..., Ax
and a sequence of (no-op) sensing operations such that at execution time the
final knowledge state K A;; I;;---: Ak; Ix lies inside the goal G. Then clearly, for
the modified system, the execution trace 1\; Ay;[3;---; Ax; I}; Ag; I, must be the
singleton set {sg}. Here each of the I' are the sensory uperations returned by
the modified sensing function ='. Clearly I! = I, = S for each ¢ = 1,...,k, and
It = {sg}. Conve-sely, suppose that in the modified system there is a sequence of
actions and sensing operations starting from some knowledge state K C S, such that
the final knowledge state is guaranteed to be the goal state {sg}. Then, eliminating
superfluous actions, clearly the last action must be Ag, and the execution trace up
until this last action must be guaranteed to place the system into the original goal
set G, using only action in A.

In short, if there is a strategy for knowingly achieving the goal in the sensorless
system, then there is a strategy for knowingly achieving the goal in the near-sensorless
system, and conversely. Thus the existence and structure of a guaranteed strategy
for accomplishing a sensorless task is not fundamentally affected by the addition of
a goal-sensor; one can always modify the problem slightly so that the goal-sensor
does not provide any information useful to the guaranteed strategy. However, it is
clearly true that in gereral, that is, for unmodified tasks, the goal-sensor does provide
some additional information. In particular, if a motion happens to stray into the goal
region, a goal-sensor will detect this. In contrast, a sensorless system would not
necessarily be able to guarantee goal recognition. This property will be useful in the
context of random strategies, as we shall see presently.

One can also establish a correspondence in the other direction, that is, one can
convert any near-sensorless problem into a sensorless one with minor modifications,
while preserving the existence and essentially the structure of guaranteed strategies.
The basic idea is to replace the goal-sensor with a mechanical trap that precludes
ever leaving the goal once it has been attained. So, suppose we are given a discrete
planning problem (S, A.=.G) in which the state space is S = {s;,---,s,} and the
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goal states are G = {s1,---,5,}. The sensor can recognize goal attainment, but
otherwise provides no information. Thus Z(s) = {S — G} for all non-goal states s
and Z(g) = {G} for all goal states g. Now, consider a modified problem (S, A',Z', G),
which has the same state space and goal set as the previous problem, but modified
actions and a modified sensing function. The new sensing function =’ provides no
information whatsoever, that is, Z'(s) = {S} for all states. The new actiors are
identical to the old, except that transitions out of goal states have been changed to
self-transitions.

Consider again an execution trace in the original system from some initial
knowledge state K into the goal set G, that is K; Ay; Jy;--+; Ax; It © G. Assuming
a worst-case scenario, in which an adversary always forces non-goal transitions,
the discussion from section 3.13.1 allows us to assume that the sequence of
actions is a guaranteed plan for attaining the goal from K. In other words,
K:A:S; AQ;S; .1 A S € G, where $ = S — G. Since the modified actions A’ leave
goal states invariant, we have also that K; A}; S; A}; S5+ +; AL S € G. In short, the
modified sequence of actions is a guaranteed plan in the modified sensorless problem.
Conversely, it is clear that any sequence of actions guaranteed to attain the goal in
the modified sensorless problem is also a sequence of actions guaranteed to attain the
goal in the original near-sensorless problem. This is because the effect of an action
on a goal state is irrelevant if the goal is recognizable.

In terms of finding guaranteed strategies, we see that sensorless and near-sensorless
problems are very similar. Adding a goal sensor to a sensorless problem does not
change the structure of the problem much, if the applicability of the sensor depends
on first executing a proper action. Conversely, for a near-sensorless problem, removing
the sensor does not change the problem substantially, if the sensor can be replaced
by a physical trap.

3.13.3 Probabilistic Speedup Example

Let us turn to the first example. See section 3.13.6 below, for a physical device that
has important commonalities with the following example.

We will construct a non-deterministic discrete planning problem, consisting of n
states and n actions. There will be one goal state, and no sensing. We will exhibit a
guaranteed solution for attaining the goal from an initial knowledge state of complete
uncertainty. The solution requires 2" —n -1 steps, and is the shortest possible solution
guaranteed to attain the goal. However, if the starting state is known exactly, there
will be solutions of linear length. This suggests a guessing strategy that guesses
the initial state, thus attaining the goal in quadratic expected time. Of course, one
must add a goal-sensor to recognize goal attainment. However, doing so does not
change the fundamental character of the problem, as one could always perform the
modifications suggested in section 3.13.2. This example demonstrates that there are
tasks for which randomization can speed up execution time. Furthermore, by the
discussion in section 3.9, it is easy to decide whether there exists a fast randomized
solution that randomizes by guessing the initial state of the system.
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Let the states be § = {sy,--+,3,}, with the goal being state s,. For convenience
we will sometimes refer to states by their indices, and specify knowledge states as
subsets of the integers. Thus K = {1,2,7} means that the system is in one of the
states s,, s,, Or s7, that is, K = {s,, 82, 87} in the usual notation.

The actions will have the following effect. Essentially, we want to force the system
to traverse almost all knowledge states, beginning from {1,2,---,n}, before arriving
at the goal {1}. Specincaiiy, the system will be forced to first traverse all knowledge
states of size n — 1, then all knowledge states of size n — 2, and so forth, through
all knowledge states of size 2, until finally arriving at the goal {1}. Furthermore,
within a collection of knowledge states of a given size, the system will be forced
to traverse the knowledge states in lexicographic order. The lexicographic order
of a knowledge state K = {s;;,s,,, " -,s,} (also written as K = {i;,is,---,4z})
containing k elements is determined by the string s;;s,, - - - s;, of length k, where the
{sij} are assumed to be ordered in such a way that :; < 73 < .. < 4. As an
example, the knowledge state {2,1,7,12} precedes the knowledge state {3,6,1,7}
since $18,87512 < 81535657 lexicographically. Observe that the first state of length &
in this ordering is the knowledge state K,':ﬁn = {1,2,---,k}, whereas the last state is
Kh,={n-k+1n~k+2,--.,n}. We will refer to the collection of knowledge
states of size k as the k** level.

For the sake of example, consider the case n = 4. The relevant knowledge states
and the order in which the system will be ‘orced to traverse them is given by the
following sequence. arranged by level. Within each level the knowledge states are
listed in lexicographic order from left to right

Level 4: {1.2,3.4}

Level 3: {1,2,3}—{1,2,4}—{1,3,4}—{2.3,4}
Level 22 {1,2}—{1,3}—{1,4}—{2,3}—{2,4} —{3,4}
Level 1: {1}

The first action Ap that we will specify is designed to permit motions between
levels, specifically from the last state in each level to the first state in the next lower
level, that is, from A’,’,‘m to ]\':Jnl, for all £ = n,...,2. In addition, A4 should not
be useful for anyv other motions, that is, the action should not be capable of moving
the system ahead more than one kncwledge state in the order that we just specified.
This means that the only ¢ther motions possible should move either to a higher level

or to a previous state in the same level. The action is given as:
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n-2 — 1,2
n—1 — 1

n — 1

Since there is no sensing, we will write A(K) to mean F4(K) for any action A
and any knowledge state K. Observe then that indeed Ao(K%, ) = K%!. Now
consider an arbitrary knowledge state with k elements, say K = {1,2, -+, 1}, with
i1 <13 < -+ <1t Then Ao(K) = Ao({:1}) = {1,2,---,n — 71 }. If we suppose that
K is not KX_ , then it must be the case that i; < n — k + 1. This in turn implies
that Ao(K) D Ao({n — k}) = {1,2,---,k} = Kk, . In other words, either Ay(K)
contains k elements and is equal to the least such set, or Ag(K') contains more than
k elements. In either event Ag(K) appears before A in the sequence of knowledge
states that we are forcing the system to traverse. Thus Ay cannot be used to any
advantage in jumping ahead in that sequence.

For the case n = 4, A is given by:

Ag: 11— 1,23

2— 1,2

3— 1

4— 1,
which maps between levels as follows:
Level 4: {1,2,3,4}

A |
Level 3: {1,2,3} AL <L {2,3,4}
Ao |
Level 2: {1,2} & ... & {3,4}
Ao |

Level 1: {1}

Here ¥ refers to any action other than A,.
Now we must define the remaining n — 1 actions. The purpose of each of these
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will be to permit the system to advance between consecutive knowledge states in
the lexicographic ordering, while preventing the system from using the actions to
advance more than one step in the ordering. In order to understand the definition
of these actions, we will look at how to form the successor of a given knowledge
state within a specific level, relative to the lexicographic ordering. Again, let us
introduce some temporary notation. First, for the time being, whenever we write a
knowledge state as a set, we will write its elements in order, so that the representation
of the state corresponds to its lexicographic iabel. In other words a knowledge state
K = {3,833, +, 8;, } will be depicted in the form K = {1,143, --,4}, with ) < i3 <
-+« < t;. Second, if we are only interested in the last ¢ elements of the knowledge
state relative to this ordering, then we will write it as {<x,i4_r41,tk_r42,° -, 2} In
other words, the prefix “«x” will mean zero or more elements whose lexicographic
value is less than that of the elements that follow. If this symbol appears more than
once in an equation, then it is assumed to be bound to the same value throughout
the equation. And third, we will let SUCC denote the successor function relative to
the lexicographic ordering and the level in which a knowledge state is located.

Now consider the successor to a knowledge state K. K is necessarily of the
form {<n,i,} for some i;. If iy # n then SuCC(K) = {<n,i + 1}. On the other
hand, if 14 = n, then we must consider the next to last entry, that is, we must
look at #4_; in the representation K = {«®,1,_1,n}. Again, if it_; # n — 1 then
Succ(R) = {«ex,7,_; + 1,44_; + 2}. Notice that in this case the successor function
changes not only the next to last entry, but may also change the last entry. In
particular, the last entry is set to be exactly one more than the next to last entry.
This follows from the definition of a lexicographic order (without duplicates). Once
again. if i4_; = n—1, then we must look at the second to last entry ix_,, and so forth.
In general, if we are required to look at the last £ entries, then A must be of Lhe form
{ewa,in —€4+2,n~€+3,-.- n}, for some 7 with 1 < ¢ < n — ¢ Thus Succ(K)
is of the form {«@n,i+ 1,7+ 2,14+ 3,---,7 +¢}. The only exception to these rules is
if K = Kk, for some k. However, in that case, we are not interested in Succ(K)
anyway, as action Ay applies.

We will now define actions A,,- -, A,_;, where the purpose of action A4, is to
change K to Succ(K) for all knowledge states of the form K = {an,i,n —€+2,n —
£+ 3,.--,n}, for some £. In othcr words, if the relevant entry in determining the
successor of K has value 7, then A, will be the action that permits the system to
make progress towards the goal. Furthermore, none of the other actions will permit
progress at K.

From the previous discussion one sees that A; must be of the form:
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A.‘ : 1 1
2 2
i1 = 1--1
i — 141
t+1 —» 1,2,...,n
142 —

t+2,143,...,n

I

t+7 t+2,:+3,...,n+2—3
n—1 —» 14+2,143
n — 142

Notice that A; leaves all states in the vange [1,7 — 1] unchanged. This corresponds to
the “<at™ entries in the representation A = {«q,i,n — € +2,n ~ ¢+ 3,---,n}. Also,
A; advances 7 to 1 + 1, which is the first entry changed by the successor function.
State 7+ 1 is non-deterministically sent to all possible states. This is done to preclude
use of A; when the relevant entry determining the successor of K actually has value
t + 1. The remaining states 2 + 2,...,n are each sent non-deterministically to a
subset of themselves. These sets form a tower coliapsing to ¢ + 2, that ensures proper
computation of the successor function.

We will now prove that these actions do indeed define a task for which there exists
a guaranteed solution whose length necessarily is of exponential size. Then we will
instantiate the actions and the strategy for the case n = 4.

Claim 3.17 For the actions and task defined above, there ezists a guaranteed
strategy that traverses essentially all knowledge states, in the order described above.
Furthermore, there is no shorter guaranteed solution.

Proof.  First, let us show that for every knowledge state containing two or more
states, there is some action that makes progress towards the goal. Once we estabiish
this, the existence of a guaranteed solution of the type described is established. Recall
that progress means either moving to a successor state, or moving down to the next
level, where each level consists of knowledge states of a given size.

Let K = {#;,---,%}, with iy < -+ < #, be given. As we already indicated,
if K = Kfyy = {(n =k +1,n—-k+2,---,n}, then Ay will make progress at
K. Otherwise, determine the smallest index ¢ for which K is of the form K =
{t,-- thetsin —€+4+2n~-€+3,--- ,n}, with tx_e41 =tand 1 <i < n—¢ Use
¢ = 1if iy < n. Then action A; will make progress at K, by construction. This
follows from the following calculation (which makes use of the fact that A;({;}) = ¢;
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for 1 <i; < i, and the fact that Ai({n —¢+j})={t +2,i+3,---,i+€—j +2} for
2<5L0).

Ai(K)

k
L_J A({5; )

k=t ¢
= (U A.’({i:‘})) U4h U (U Ai({n_£+j}))

=1 =2

= {i, - u-d JE+F1T U E+2,043,--,0+ 8}
= SUCC(K).

Now let us proceed in the other direction, and show that applying the wrong
action 4; to a knowledge state cannot cause the system to advance in the ordering
outlined earlier. This will establish uniqueness of the solution, in the sense that there
is no shorter guaranteed strategy.

Let a knowledge state K" be given, and consider applying action A4,. We have
already shown that Ay cannot make progress unless K = KX, for some k, so assume
that ¢ > 0. Observe that if i + 1 € K, then A,(K) = {1,2,---,n}, that is, A,
maps KA to complete uncertainty. This is definitely not progress, so we may as well
assume that 1 + 1 ¢ KA. Now suppose that in fact X' C {1,2,---,7 — 1}. Then
A;(K) = K. which again means there is no progress. Similarly, if K C {1,2,---,1},
then A;(K) C {1,2.---,7i — 1,7 4+ 1}, which is progress, but now K is of the form
for which A; was designed in the first place. So, we may assume that K intersects
the set {i + 2.---.n}. Let ¢ be the minimal element in K N{i + 2,---,n}. Then
A{(K) D Ai({€}). Now write K as

K= (KN, -i-1)) U (KNGi+2.,n}) U (KN

Given the minimality of £, this says that |[K| = |[K N{1,---,i=1}|+|KN{¢,---,n}+
xk(1), where xx is the characteristic function of K. Applying action A;, we see that

AK) = (KN(1,-,i=1}) Ui +2,i 48, i+n—2+2} [J AK N},

where A;({i}) = {i + 1}. Thus |A(K)| = |[KN{1,---,i =1} + (n = £+ 1)+ xxk(1).
If |Ai(K)| > | K|, then A; is moving K back up one or more levels, hence not making
progress, so consider the possibility that |4;(K)| < |K|. This is possible if and only
ifn—-€+4+1<|KN{¢,---,n}|. Clearly, this inequality can at best be an equality, in
which case we must have that K = {¢,---.n}. Now there are two possibilities: either
t € K or not. In the first case. we have that K is of the form {<x,7,£,6+1,- - n},in
which case A; is designed to make progress at K. Thus, finally, assume that i1 ¢ K.
So, K = {a®,{,+1,---,n} and Ai(K) = {a®,i+2,---,i+n—{+2}, withi+2 < L.
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But this says that either 4,(K) is equal to K or A;(K) precedes K lexicographically.
In short, A; does not make progress at K.

Let us instantiate these actions for the case n = 4. We have

A 1 2 Ay 1- 1 Az: 1+— 1
2~ 1,2,3,4 2— 3 2+— 2
3~ 3,4 3— 1,2,3,4 3 4
4— 3, 4+— 4, 4 1,2,3,4.

The guaranteed solution is given by:

{1.2,3,4}
1]

As A, A
{1,2,3} — {1,2,4} — {1,3,4} — {2,3,4}

Ap

.42 .43 Al A3 A2
{1,2} — {1,3} — {1,4} — {2,3} — {2,4} — {3,4}
Ao

{1}

We see then that there are tasks for which the planning and execution times are
exponential in the size of the input. Observe, however, for this particular example,
that if the initial state of the system were known precisely, then there would be a
fast solution for attaining the goal. In particular, if the initial state is s; then the
system is already in the goal. If the initial state is either s; or s4, then action Ag
will attain the goal in a single motion. Finally, if the initial state is s;, then action
A, will cause a transition to state s3, from which Ag will attain the goal. In short,
if one writes out the dynamic programming table to two columns for this task, then
one has a collection {K;} of knowledge states that cover the entire state space. Thus
one can employ a randomized strategy that guesses the initial state of the system,
then executes a short sequence of actions designed to attain the goal. One must, of
course, add a goal sensor, in order to ensure reliable goal recognition.

For the sake of completeness. note that the relevant portion of the backchaining
diagram corresponding to the dynami: programming table out to two columns is given
by the following diagram (depicting vertical levels rather than horizontal columns):
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{2}

N

3} (3,4) (4}

{1}

In the general case, one must backchain out to the n — 2"? column of the dynamic
programming table. A guessing strategy consists of guessing between the n — 1 non-
goal states, then executing a strategy of no more than n—2 steps, that is guaranteed to
attain the goal if the guess is correct. Thus the expected number of actions executed
until the goal is attained is on the order of nZ.

Notice that adding a goal sensor does not fundamentally change the exponential
character of the guaranteed strategy, by the partial equivalence of sensorless and near-
sensorless tasks, as established in section 3.13.2. It is important to keep this partial
equivalence in mind, since a goal sensor clearly permits a speedup of the guaranteed
solution if one does not make the modifications suggested by the partial equivalence.
We thus have the following claim.

Claim 3.18 There ezists a near-sensorless discrete planning problem in which the
shortest guaranteed strategy has ezponential length, but for which there ezists a
randomized strategy that only requires quadratic erpected time.

Proof.  Most of this claim has been proved. We only need to verify that there
does indeed exist a linear time strategy for attaining the goal if the initial state of
the system is known. We return to the construction above.

First notice that action A is guaranteed to move state s, and s,_, into the goal
in a single motion. Observe also that action A; is guaranteed to move state s; to state
si41 for all 7. This establishes the claim. [

In retrospect, the randomizing part of the claim is not very surprising. The
actions A; are actually fairly deterministic. However, the solutions are not at all
commensurate. Said differently, the solution for a given initial state is not guaranteed
tc serendipitously make progress at other states. This is quite unlike the fortunate
situation that we encountered with one-dimensional random walks, where the same
solution pretty much applied to all possible states. Thus the surprising aspect of the
claim is the exponential character of the guaranteed solution for what may seem to
be fairly deterministic actions.

3.13.4 An Exponential-Time Randomizing Example

The following example exhibits a (near-)sensorless task for which the shortest
guaranteed solution requires an exponential number of steps and for which a
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randomized solution that guesses the starting state also requires exponential time.
The basic idea is to generate a problem in which the knowledge states play the role
of bit vectors, that may be modified only by counting.

The example will consist of n states, and 2n — 3 actions. We will present
the example as if there is no sensing, bearing in mind the partial equivalence
between sensorless and near-sensorless problems of section 3.13.2. We retain some
of the notation from the previous example (section 3.13.3). In particular, we will
interchangeably refer to a state either as s; or as ¢, for1 = 1,...,n

The state space will be of the form S = {sy,---,5,} = {1,---,n}, with the
goal being state s;. We will denote the actions by the symbols A;,---,A,., and
By,:--.Bn.2. We will write knowledge states as ordered tuples, as we did in the
previous section. In other words, a knowledge state K of size k will be written in the
form K = {s;;,---,s;,} = {t1,---, 4}, with ¢; < --- < i;. Thinking of a knowledge
state as a bit vector, K will correspond to the number z(K'), with

7(K) = Z on=t.

e

Conversely, given an integer r in the range [0,2" — 1], there is a unique knowledge
state A" for which z(K') = z. We will denote this knowledge state by K (z), with

K(z)= {i | bit # (n — 1) is a ] in the binary representation of z }.

As an example, if n = 10 and A = {1,3,7}, then z(K) = 648. Similarly, if n = 4
and z = 9, then K(z) = {1.4}.

As before, we will let the prefix symbol “axw” in the representation K =
{@n.1,,--- .1/} denote zero or more elements whose lexicographic order precedes
that of 7;. This notation carries over to the binary representation of the number
z(K). Comparing the binary representation of z(K) with K, we have the following
schematic:

n

Bit #: .- n—i n—1, n—i, cee 0

(K): a« 0 --- 0 1 0 --- 0 1 0 --- 0 1 6 --- 0
I l {

K : { K, Siyy Siz, ter Si, }

The actions that we will construct will force the system to traverse an exponential
number of knowledge states, beginning with the state of complete uncertainty
{1,---,n}, and ending with the goal state {1}, in an order that corresponds to
counting downwards from 2" — 1 to 2"~'. For the special case n = 4, this corresponds
to the following transitions (for later reference the transitions are also labelled with
the associated actions):
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K z{K) (actions)

{1,2,3,4} 15
! | 4
{1.2,3} 14
| | B
{1,2,4} 13
| [
{1,2} 12
| | &
{1,3,4}) 11
! .
{1.3} 10
| | B
{1.4} 9
| | A
{1} 8

Let us first define the actions {Ax}. These are designed to count down from
knowledge states A" whose associated numbers r(K') are odd. Since an odd number
contains a one in the least significant bit, the knowledge state must contain the state

$n. The actions { A} are designed to remove this state. We have,fork =1,...,n—1,
A —
2 - 2
k — k

k+1 — 1,2,....n

n—1 ~ 1,2,...,n

n — k.

[Note, of course, that if k =n — 1, then Ay: n—1+—n—1]

Similarly, the actions { B} are designed to count down by one from knowledge
states whose associated numbers are even. Thus these actions must worry about
borrowing properly from higher order bits. We have, for k = 1,...,n - 2,
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By : — 1
2 - 2
k — k

k+1 —» k+2,k+3,...,n
k+2 —» 1,2,...,n

n — 1,2,...,n.

For the special case n = 4, we have the following five actions:

Ay 11— 1] Ay: 11— | Az: 11— 1
2+ 1,2,3.4 2rs 2 2+ 2
3— 1,2,3.4 3— 1,2,3,4 3— 3
4 ], 44— 2, 4— 3.
By: i 1 By: 11— 1
2 3,4 2 2
3— 1,2,3,4 3— 4
40— 1.2,3.4, 4 1,2,3,4

Claim 3.19 For the actions and task defined above, there ezists a guaranteed
strategy that traverses essentially all knowledge states, in the order described above.
Specifically, the strategy traverses all knowledge states that contain state s,. There
are 2"~ such knowledge states. Furthermore, there is no shorter guaranteed solution.

Proof.  First, let us show that for every knowledge state K there is some action
that makes progress. In this case progress means that the number determined by the
bit-vector representation of K is decreased. In fact, we will exhibit an action that
decreases z(K') by exactly one.

Suppose that z(K) is odd. Let k be the order of the least significant bit other
than bit #0 which is set to 1. Then

k-1
2(K)=aal0---01,

meaning that K = {ax,s,_4,s,}. Now note that A._«(K) = {an,s,_i}, so
z(An_x(K)) = z(K) — 1, as desired.

On the other hand, suppose that z(K’) is even. Again, let k be the order of the
least significant bit that is set to 1. Then k£ > 1, and
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Ify =z(K) -1, then

vt
y =<0 - 1.

This says that A = {ax,s,_x} and that K(y) = {9, Sn_k41sSn_k+2:" "+ 5n}. Now
note that B,_,_1(K) = K(y), as desired.

We have shown that, for any knowledge state K, there is a strategy for counting
down from z(K'). In particular, suppose K = {i1,-+-,%}, with i < -+ < 4. If
i1y = 1, then one can count from z(K) down to 2"~!, at which point the goal is
attained. On the other hand, if {; > 1, then one can count down from 2*~! + z(K) to
2"=1 at which point the goal is attained. This amounts to pretending that s, € K.
Alternatively, one could just count down {rom z(K') to 1, which places the system in
state s,. Applving action A, then attains the goal. If one looks at the details, these
two strategies are really the same. After all. the counting never involves changing the
bit corresponding to s;.

Second, we must show that applying the wrong action at a knowledge state cannot
make further progress. This will estabhish that the strategy just outlined is the
shortest strategy guaranteed to attain the goal.

So, suppose that knowledge state KA is given, and let z = z(R).

Consider applyving action 4. for some k. I K ({sks1y - +Sn_1] # 0 then
Ax(R) = {s1,-- .8}, which is certainly not progress. On the other hand, if
KR C {s;.---.sc}. then A¢(K) = K. which again is n~t progress. That leaves t..e
possibility that A" C {s;.--- s, U{s,}. Suppose that both s, € A and s, € K.
Then Ay is designed to make progress at K, so that’s fine. On the other haud,
suppose that s, ¢ K and s, € K. Then K = {ax,s,}, while Ax(K) = {<n,s¢}. Note
that r(Ax(K)) > z(K'), so this motion also does not make pror ress.

Consider applving action By, for some k. If K C {sy,---, s}, then By(K) = K,
which means no progress. If K contains any elements from the set {sg42,--,sn},
then Bx(K') is the entire state space, that is, complete uncertainty. The remaining
case savs that A = {ax,sx4;}, but then A is of the form for whic? B, was designed
to make progress.

Observe that the previous proof also shows that if the state of the system is known
exactly, say K = {s.}, then the only reasonable strategy for attaining the goal is to
count down to 1 from 2"~', followed by an application of action A,. This is be:ause
applying .e wrong action at a knowledge state essentially has one of t+.0 eil _ts:
Either (1) the action does not change the know'edge state, or (2) the action yields
complete unceriainty. The exception to this rule is given by the effect on state s,,
but this state lies or. action away from the goal, and misapplving an action when
the system is in state s, only moves it further away.

Thus we have
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Claim 3.20 There ezists a near-sensorless discrete planning problem in which the
shortest guaranteed strategy has ezponential length. Furthermore, the erpected
running time of any randomized strategy is also ezxponential in the number of states
and actions.

3.13.5 Exponential-Sized Backchaining

The following example demonstrates that there are sensorless tasks for which the
dynamic programming approach of backchaining can generate a table of exponential
size even if one only backchains a linear number of steps. In fact we will exhibit an
example with n states and n? — n actions in which the knowledge state S is obtained
in the n —1°* column of the dynamic programming table, and in which an exponential
number of knowledge states are generated in between. Of course, this implies that
there exists a fast strategy for attaining the goal. Indeed, there is a linear-time
strategy. Furthermore, it may be possible to arrive at that strategy quickly, by using
an approach other than the dynamic programming approach. For our particular
example all actions will be deterministic. This immediately says that there is a
fast planning algorithm, using Natarajan's graph-searching techniques (see [Nat8&6]).
However. one can easily modify the actions so that they are non-deterministic. In
short, this exaraple says nothing about the fundamental complexity of planning under
uncertainty, merely something about planning using backchaining. More fundamental
results are contained in [Pap] and [PT], as we have already mentioned.

The state spaceis S = {s1,---,sn} = {1,---,n}. The n? — n actions are given by:
si, k=7 . L

(se) = : <ij<n, ,

Aus(s#) { sk, otherwise. lstysn i #)

In other words, 4,; collapses the two states s; and s; to the state s;, while leaving all
other states invariant. There is no sensing.

We will start the backchaining process off by assuming that any singleton state
is a goal. In other words, if the system can unambiguously move into some single
state, then it has achieved its goal. It is easy to change this problem into one in
which the system must attain a particular goal state, by adding an action and a state
to the construction. In any event, we may assume that column number zero of the
dynamic programming table contains entries for all knowledge states of the form {k},
fork=1,---,n.

Now suppose that the planner is backchaining from the £** column of the dynamic
programming table, and that all the non-blank entries in this column are of size
at most £ + 1. Suppose further that the collection of non-blank entries includes all
knowledge states of size £ + 1. Since no action collapses more than two states, it is
impossible to obtain knowledge states of size greater than £+ 2 in the £ + 1** column.
However, it is possible to obtain all knowledge states of size £ 4+ 2. This says that
precisely in column number (n — 1) the knowledge state S will have its entry filled
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in for the first time. Furthermore, all other knowledge states will also have had their
entries filled in.

3.13.6 The Odometer

The following physical device has important commonalities with the graph example
presented in section 3.13.3. In particular, the task described by this device has a
guaranteed solution that requires an exponential number of steps, and a randomized
solution that only requires an expected linear number of steps.

Imagine a series of n horizontal plates or wheels arranged vertically above each
other. The plates are connected by a gearing mechanism that acts much like an
odometer. Specifically, a primitive action consists of turning a plate one-tenth of
a revolution. Call this a partial turn. Whenever a given plate turns, it also turns
the plate above it. but at one tenth the speed, so each time a plate makes one full
revolution, the plate immediately above makes a partial turn. Similarly. turning a
plate turns the plate directly below it at ten times the speed. There is a crank below
the bottom plate which turns that plate, and consequently all other plates at reduced
speeds. Under certain circumstances mentioned later, individual plates may also be
turned directly. The crank and any individual plate can only be turned at a specific
fixed speed. say. one partial turn per unit time. (Turning an individual plate directly
also turns the other plates via the gearing mechanism, as described earlier.)

On one of the plates is a ball. The ball arrives from a distribution bin which
non-deterministicaily places the ball on a non-deterministically chosen plate. There
is a chute next to each plate. Turning the plate so that the ball passes by this chute
causes the ball to roll off the plate, down the chute, and onto the plate below. The
chutes are themselves arranged in unison above each other. They are hinged to a
vertical pole, and may be swung away from the plates. In this case, if a plate is
turned so that the ball passes by the location at which the chute would normally be,
the tall simply drops vertically. If the ball is not caught by someone, it reenters the
distribution bin and is once again non-deterministically placed on a plate. The plates
cannot be turned individually when the chutes are in place; only the crank may be
used. However, the plates may be turned individually when the chutes have been
swung away from the plates.

There are thus two ways to remove a ball from a plate. The first is to swing the
chutes away from the plates, move one's hand up to the plate containing the ball,
then turn the plate until the ball falls out and onto one’s hand. The second way is
to swing the chutes into place, then turn the crank until the ball emerges from the
bottom plate.

The first approach requires turning the given plate at most 10 partial turns before
the ball falls out. The second approach may require turning the crank as many as
22(10" — 1) partial turns, should the ball happen to be on the top plate at the start.
Clearly, assuming that one can determine on which plate the ball is resting, the first
approach is preferabie.

Now, suppose, however. that one cannot determine on which plate the ball is
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resting. For instance, the plates might be covered. Then the only guaranteed strategy
for removing the hall is to turn the crank with the chutes in place, until the ball
emerges. Turning any individual plate, with the chutes swung away, runs the risk of
causing the ball to drop from a plate, forcing it back into the distribution bin. From
a worst-case point of view, that strategy might never terminate. Consequently, the
only guaranteed strategy may require a long time to execute.

Fortunately, a randomized solution consists of guessing the plate on which the
ball is resting, then acting as if that plate did indeed hold the ball. In other words,
in the absence of a sensor, the randomized strategy simulates one. With probability
1/n, the strategy will pick the correct plate. If it picks the wrong plate, then the
ball is repositioned, and the strategy can try again. The expected number of partial
turns until the ball emerges is thus bounded by 10n. This is only a linear factor more
than in the case in which a sensor is available, well below the exponential guaranteed
strategy.®

3.14 Summary

This chapter considered the problem of planning in the presence of uncertainty
in discrete spaces. The stancard dynamic programming approach was extended
to include an operator that would purposefully make randomizing choices. The
motivation for including this operator was to extend the class of solvable tasks beyond
those solvable by guaranteed strategies. Not all tasks admit to what traditionally are
considered guaranteed solutions. These are solutions that are certain to accomplish
their tasks in a fixed and bounded number of run-time operations that may be
ascertained at planning time. There are many tasks that one would consider solvable
simply because they may be accomplished frequently even if not always. By placing
a loop around a strategy that tries to solve such a task, one can often be certain of
a solution eventually. Although in principle the solution could require an unbounded
amount of time, often one may be able to compute the expected time until the
task is solved. In particular, by purposefully randomizing its decisions a strategy
can sometimes enforce a minimum probability of success on any particular attempt,
thereby placing an upper bound on the expected time until task completion.

The basic scheme is to compute partial plans that are guaranteed to accomplish
portions of the task. Generally these partial plans will only succeed if fairly stringent
initial conditions are satisfied. While any particular plan’s preconditions may not be
satisfiable, the union of all the preconditions may be satisfiable. This means that in
fact some partial plan’s preconditions are satisfied, but due to uncertainty the system
cannot ascertain which plan’s preconditions. In that case it makes sense to guess the
appropriate partial plan. Effectively the strategy is executing a randomizing action
by guessing which partial plan is applicable. If the guess is correct, then the task will

30f course, the randomized strategy may require more than the expected number of trials to
succeed on any particular execution. However, the probability of requiring several factors of this
expectation decreases exponentially quickly in the number of factors.
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be accomplished. Otherwise, the system will need to guess again, until it eventually
accomplishes the task.

Of particular interest were simple feedback loops. Theses are strategies that only
consider current sensed values in deciding on motions to execute. Such strategies are
often useful when there is some progress measure on the state space that measures
the system’s distance from task completion. Whenever possible, the system will
execute an action that makes progress relative to the progress measure. Otherwise,
the system will execute a randomizing motion. The purpose of the randomizing
motion is to either accomplish the task or move to some location from which the
available sensory information again permits progress. In this context the chapter
explored various types of random walks. It was shown that if the expected speed
of progress is uniformly bounded away from zero, then it is possible to bound the
expected timc until task cowmplition. Tne bounu 1s the intuitively desirable bound
of distance divided by expected velocity, where distance is defined by the progress
measure.
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Chapter 4

Preimages

In this and the next chapter we will turn our attention to continuum spaces, primarily
spaces such as R". The same ideas that appeared in the chapter on discrete planning
problems will appear in the coniext of continuous planning problems. In particular,
the notions of expected progress and randomization by guessing starting states will
carry over naturally and prove useful. Rather than develop the whole framework
afresh. we will focus on particular examples and results that should make the
connection between the continuous and discrete cases clear.

4.1 Preimage Planning

In the chapter on discrete planning problems, planning with uncertainty was viewed
as planning in the space of knowledge states. This view effectively reduced the
problem of finding a guaranteed strategy in a space with both imperfect control and
imperfect sensing to a backchaining problem in a space with imperfect control and
perfect sensing. Backchaining was implemented by dynamic programming, using a
boolean cost function. A similar approach app'ies in continuous spaces. The preimage
planning approach developed by [LMT] formally introduced this notion into robotics.
We will briefly review this approach in this section. The domain will be taken to
be the configuration space of the robot or part being moved relative to whatever
obstacles there may be in the environment (see {L0z83]). We will, however, often
restrict ourselves to ®", for some n, with polyhedral obstacles. This might correspond
to the configuration space of either a cartesian robot or a polyhedral part which is
only permitted to translate but not to rotate.

Uncertainty

First let us define uncertainty. We have already indicated that sensing errors are
modelled as bounded error balls. Thus, if the system is in state x at execution time,
then the position sensor may return a value x* that lies within some distance €, of
x. In the language of chapter 3, once we postulate full sensing consistency, then the
collection of possible sensory interpretation sets is given by the collection of balls
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{B.,(x")}, as x" varies over B,,(x). If the sensors are more complicated than this,
in particular if there are sensors that measure other attributes of the system, such
as velocity or force, then one can model this by increasing the dimensionality of the
state space of the system to include these other attributes. Alternatively, if the future
state of the system does not depend on these attributes, then one need not raise the
dimensionality of the planning space. Instead, one can model the additional sensing
information by projecting it into the original state space. For example, the measured
force may indicate that the object is in contact witn some surface S. This generally
reduces the position sensing uncertainty, by selecting a lower dimensional slice of the
sensing error ball, corresponding to the intersection of the surface with the position
interpretation, that is, S B,,(x"). There are some subtleties here. For ins.ance,
the interpretation of a force or a velocity may depend on the action executed. This
means that possible sensory interpretation sets must now be modelled not only as
functions of the state of the system, but also as functions of the commanded action.
While we did not model this dependence in the discrete setting, doing so does not
pose any fundamental difficulties. Having said all this, we will basically ignore sensing
of attributes other than position in our examples. For more detailed investigations
of sensing in the context of preimage planning see [LMT)], [Mas84], [Erd84], [Buc],
[Don&9), [CanR8], {Lat], among others.

Control uncertainty is defined similarly. At execution time, whenever a nominal
control command is issued, the actual effect on the system is given by a range of
effective commands that lie in some error ball about the nominal command. More
general models of control uncertainty are of course possible. Within the LMT
preimage methodology, the envisioned commands are either applied forces or applied
velocivies. In fact, LMT focuses on an equivalence between forces and velocities
given by modelling dynamics as generalized damper dynamics, an assumption that
produces a first-order system. Specifically, control commands are nominal velocities
vo; the evolution of the system is governed by the first-order equation

(4.1) F=B(v-v)),

where v is the actual velocity of the system, F is the force exerted by the environment
on the system, B is a damping matriz, and vy is the effective commanded velocity. The
damping matrix is often simply taken to be the identity matrix, perhaps multiplied by
some gain factor. Control uncertainty is represented by the term vg. This is assumed
to lie in some error ball B, (vo) about the nominal commanded velocity. See figure
4.1. It is sometimes convenient to think of the velocity error as defining an error cone.
This cone represents the trajectories that can locally emanate from a given point.
Generalized damper dynamics are convenient, since they model the (error-free)
trajectories of the system as piecewise linear motions. Similarly, in the presence of
uncertainty, the possible trajectories may be modelled as cones. For further discussion
on generalized damper dynamics see [Whit77] and {LMT]. We will henceforth assume
that the dynamics are generalized damper dynamics in R, with polyhedral obstacles.
Observe that these models of uncertainty are bounded worst-case models. In
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Commanded
velocity

Yo

Velocity error cone

Ev

Velocity error ball

Figure 4.1: Velocity error ball about a nominal velocity command. If one is only
interested in directions. sometimes it is useful to think of the error a< an error-cone.

other words. nothing is said about the actual distribution of sensor values or control
commands within the uncertainty balls. The distributions may be probabilistic, they
mayv be fixed biases, or they may even be chosen in a worst-case manner by an
adversary.

For future convenience we will also assume that the sensing and control error balls
are all open balls.

Preimages and Termination Predicates

Integral to the planning of guaranteed strategies is the notion of a preimage.
Intuitively, a preimage of a collection of goals is a region in state space from which
a certain action is guaranteed to attain one of the goals, and do so in a recognizable
manner. Goals are themselves modelled geometrically as regions in state space.
Forming the preimages of a goal is analogous to backchaining one column in the
dynamic programming table. However, it is not exactly the same thing. Into the
definition of a preimage enters the notion of a termination predicate. The termination
predicate is the decision process that terminates a motion at run-time, signalling
goal attainment. The amount of information that a termination predicate considers
determines the power of the planning system to solve certain tasks. Essentially, the
termination predicate performs the forward projection of states and the intersection
with sensory interpretation sets discussed in the discrete setting If a termination
predicate considers only current sensed values in deciding goal attainment, then, in
the terminology of chapter 3, one has a planning problem involving strategies that
are simple feedback loops. If the termination predicate considers all possible past
sensed values as well as time-indexed forward projections then one has a planning
problem analogous to the full dynamic programming approach discussed in the
discrete setting. There are numerous intermediate possibilities, some of which did not
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seem as evident in the discrete case. One important variation is to forward project the
start region under a given commanded velocity, but then to use only current sensor
values intersected with this forward projection in determining goal attainment. See
[Erd86!. See also page 209 for further discussion of termination predicates.

Knowledge States

One important characteristic of the termination predicates employed in the LMT
framework is their Markovian nature. This means that the entire information
available to a termination predicate at any given time may be summed up in a single
set describing the possible configurations of the system. In the discrete setting this
set was referred to as a knowledge state. The existence of such a knowledge state
assumes that the state space of the system is Markovian as well, that is, that the
future behavior of the svstem depends only on the current state of the system and the
action being executed. It also assumes, as we have been throughout the thesis. that
the sensor values obtained at execution time depend only on the current state of the
system. An implication cf this observation is that a termination predicate can forget
the exact sensor values and forward projections that gave rise to the current knowledge
state. Equivalently, supplying a termination predicate with a given knowledge state
and starting a motion from anywhere inside the set of configurations described by
that knowledge state permits the termination predicate to make precisely the same
decisions that it would have made if it had encountered the same knowledge state
during a motion that had originated from some other region at some prior time. See
[ Masd4) 101 a desciipuon of how a terminaiion predicate functions.

Actions and Time-Steps

One aspect may be troubling in comparing the discrete and continuous settings. In
the continuous setting it seems that one always needs a termination predicate to
stop a motion. After ail, the basic commands are velocities, so one needs some form
of termination to switch between different velocities. In contrast, in the discrete
setting, termination predicates were never explicitly required. Instead, each step
involved some action. which terminated by definition, whereupon the available sensory
informatiou was used to select a new action. In fact, the analogy between the
discrete and continuous settings becomes apparent if one considers actions to be
velocities executed over some duration of time. In particular, velocities executed over
infinitesimal time, or over the cycle time of the control loop, form the natural analogue
in the continuous case of the single-step actions in the discrete case. Conversely, a
velocity executed until some termination predicate signals goal attainment has as
counterpart in the discrete setting a repeated application of the same action until
some condition that is a combination of sensory infcrmation and history is sausfied.
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Peg

Position sensing
uncertainty ball

//,

Goal

Figure 4.2: The task is to slide the peg into the hole. Given large position sensing
uncertainty, a simple feedback loop that does not remember its past state will become
confused near the hole.

History

Notice that once one establishes that primitive actions are really velocities executed
over a small duratiun of time. then the notion of a simple feedback loop makes sense
both in the discrete and continuous cases. It is simply a control loop in which at cach
instant in time the command issued depends only on the current sensed values. In
contrast. the notion of a preimage which employs an action over an extended period
of time tacitly includes some history. This history may simply be tLe informaticz
implicit in knowing that a termination predicate will eventually signal success. As
an example, consider the task of sliding a peg into a hocle, as in figure 4.2. If position
sensing uncertainty is large, then the system cannot know which side of the hole the
peg is on once it is near the hole. Thus a simple feedback loop would have to resort
to randomization as used in the example of section 2.4. On the other hand, if the
system is far enough away from the hole, then it can decide which way to move.
Having chosen a motion direction, and a termination predicate that recognizes goal
attainment by noting that the peg is falling into the hole, the system can proceed
to move in the correct direction, ignoring all sensor values except the final one that
signals goal attainment. In short, there are two preimages, corresponding to being far
enough to the left or right of the hole. And although it is true that the termination
predicate does not need history to recognize goal attainment, the strategy employs
history in knowirg that certain sensor values are irrelevant. The history is implicitly
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used to rule c.t .ne confusion that a simple feedback loop would encounter. This
is an important distinction. which makes clear that a preimage in the continuous
setting corresponds to a special type of strategy with history in the discrete setting.
In particular, a preimage is a strategy that locally is guaranteed to make progress
towards the goal.

Preimages: Definition

The preimage R relative to a commanded velocity v, of a collection of goals {G,} is
specified implicitly as the solution to an equation of the form

PVO‘R({GO}) = R.

Here the operator Py, n defines a subset of the region R from which recognizable
goal attainment is guaranteed. Recognizable attainment mecans that the termination
predicate will successfully halt the motion. specifving which goal G, has been
attained. The termination predicate is given the start region R as data, and may use
this data in deciding whether the goal has been attained. Of course. the termination
predicate need not use K. Tor instance. if the termination predicate being emploved
only considers current sensed values. then it would ignore the start region R. See
[LMT.. [Masd4], (Erd=6]. and [Don89] for further details on the specification of the
preimage equation. We will content ourselves here with this brief explanation. bearing
in mind the planning approach discussed in the chapter on discrete planning problems.

Planning by Backchaining

Planning a guaranteed strategy consists of backchaining preimages, much like in
the dynamic programming approach. The analogy in the discrete setting would be
to backchain several substrategies each of which makes progress locally until some
subgoal is attained. In the continuous case the formal definition proceeds as follows
(see [LMT] and [Mas34] for further details). Let Gy = {G,} be the collection of
task-level goals. Now, suppose that G is defined as some collection of subgoals to be
attained. One backchains by forming all preimages Rg x41, which satisfy the preimage
equation Py, r,,,,(Gx) = R x+1, for some commanded velocity vo = vo(Rpk41) that
depends on the actual preimage. This collection of preimages forms the collection of
subgoals for the next ievel of backchaining, that is, Giyy = {Rp+1}sem, where B is
some appropriate index set. Planning either stops when some preset limit on k has
been reached. or when no further preimages can be romputed. The task is said to be
solvable if the initial knowledge state of the system I is contained in some preimage
generated during this backchaining process. I is a subset of the state space that is
known to contain the actual initial state of the system. Executing a strategy entails
collapsing this recursion, just as in the discrete case. In other words, given that the
system is in a preimage Rk € Gi at the k' level, the system executes action vo(Rgx)
until some subgoal Ry x_; in the k—1° level G4_, 1s attained. This process is repeated
until a task goal G, is attained. We refer to such a strategy as a guaranteed strategy
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since it is certain to attain a task goal in a specific number of steps. This stands
in contrast to a randomized strategy, which only has some probability of attaining a
task goal and thus may fail to solve a task in any fixed number of steps.

4.2 Guessing Strategies

With these preimage definitions in hand, one can now define the guessing operator
SELECT for the continuous case. For the case of initial-state-guessing this amounts to
backchaining preimages until cne has a collection {Rjx } sep at the k** level that covers
the initial state of the system Z. A randomized strategy consists of randomly selecting
one of these K_, as the guessed starting region, then executing the guaranteed
strategy for Ry . The strategy is a guaranteed strategy for attaining a task level goal.
in the sense that the strategy would reliably and recognizablv attain one of the G, if
the svstem knew for certain that its starting state was in the preimage Rz . However.
the starting state is merely guessed. and thus the usual admonishments regarding
reliable goal recognition and reliable restart of the sirategy apply [see section 3.9 for
the discrete casel. For this reason we will assume. as we did in the discrete case. that
the task-level goals {G,} are recognizable. This means that if the system is ever in
one of the sets (7, it will know so based purely on current sensing and not on the
history of the motion. Similarly. we will assume that the svstem never strays out of
some region X. where T C X C Usep Hok. In other words, the sets {Rj34}ses may
used repeatedly for restarting the guessing loop.

The discussion of randomized strategies that guess the initial state of the system
generalizes to the more general case of randomized strategies that make multiple
guesses. much as discussed in section 3.11 for the discrete case.

4.2.1 Ensuring Convergence of SELECT

A more serious issue is whether the operator SELECT is meaningful in the
continuous setting. Cause for concern stems from the possible infinite size of the
collection {Rjx}sep. If the randomized strategy must guess between an infinite
collection of states, then there is no guarantee that the probability of selecting the
correct preimage Rj, is non-zero. As an example, consider the problem in figure
4.3. In this example there is no horizontal position sensing, but there is perfect
vertical position sensing and perfect velocity control. For the sake of example, let
us assume that the svstem can only move verticallv. The goal is a one-dimensional
region specified by the slanted line. Clearly, the vertical lines drawn above the goal
are all preimages, relative to a termination predicate that remembers the system'’s
start region. [Similarly for veitical lines below the goal, of course.] This is because if
the system knows on which vertical line it is located, then it knows at which height
to stop a downward motion towards the goal. Now suppose that the system does not
know its horizontal position. and thus consider a randomized strategy that decides
to guess between the vertical lines. If the strategy guesses correctly, then the goal
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Figure 4.3: This example shows that preimages need not contain any interior, and
that there may be an infinite number of preimages. In the example. vertical position
sensing is perfect, horizontal position sensing is non-existent, and the system can only
move vertically, with perfect velocity control. The goal is a line in space. Preimages
are the vertical lines above the goal.
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will be attained. However, the probability of guessing correctly is zero! In short, the
randomized strategy is useless.!

The previous example makes two points: (1) That there may be an infinite number
of preimages of a goal, and (2) that the probability of guessing the correct start state
by guessing between an infinite number of preimages may be zero. However, the
example was highly contrived, in that control uncertainty was taken to be zero and
in that the sensing error was infinite in one dimension while ze1o in another. We
will now explore some conditions that ensure a non-zero probability of guessing thc
correct starting state.

Constraints on Guessing Probabilities

Let us suppose that we have a collection of sets {R,} that covers another set X.
The set X describes the possible starting locations of the system. Each set R, is
a preimage. Here a is assumed to lie in some index set A. The operator SELECT
chooses one of the sets R, by selecting an a from A. Once an a has been selected. the
system executes a strategy for attaining the goal from the preimage R,. as outlined
above and in chapter 3.

We assume thai the choice of a is random. This means that we think of 4 as a
measure space with some o-algebra and some measure u4 that determines how the
a are chosen. Thus, the probability that o will lie in the set B C A is given by
pa(B). For instance, in the discrete case, A was jusi a finite subset of the integers
{1.2,---.q}, and pu4 was given by u4(B) = |B|/|A] for every B C A.

Now, consider the actual state of the system £ € X. Let yg, be the characteristic
function of the set R,. In other words, xg_ (z)is 1 if ¢ € R,, and 0 otherwise. If one
fixes . and allows a to vary, then one can think of xg,(z) as a function of a. Thus
the probability of correctly guessing a starting region R, that contains the actual
state of the system is g.ven by:

pe(z) = [ Xru(2)dua(e):

Said differently, p.(z) = p4(B;), where B; is the set of all a for which z € R,,.

Now suppose that the state = is non-deterministically distributed over the region
X. Thus an adversary could in principle choose r so as to minimize the probability
of correctly guessing a region R,. Thus. in choosing A and p4 one must? satisfy the
constraint

!We note in passing thai inis example did not satisfy the criterion of reliable goal recognition.
However, it is easy to modify the example in the manner outlined in the section on the partial
equivalence between sensorless and near-sensorless tasks (section 3.13.2), so as to achieve reliable
goal recognition while preserving the character of the example.

2The term ‘must’ is bit stronger than necessary. With repeated guessing, it is fine if the probability
of guessing correctly is zero occasionally, so long as the sum of the success probabilities over an infinite
number of guesses is unity. However, constraint (4.2) is appropriate if one only considers individual
guesses.

. r————
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(4.2) 0< ;Iel)f(pc(x).

The constraint says that the probability of correctly guessing a preimage that includes
the actual state of the system is non-zero, independent of the actual state of the
system. Actually, the constraint says more, namely that the guessing probabilities
are uniformly bounded away from zero. This ensures that the expected convergence
time is finite in a loop that repeatedly guesses the start state.

Similarly, if the state z is randomly distributed over the set X, with probability
measure v(z), then one must satisfy the constraint

(4.3) 0</ch(x)du(:r).

This constraint says that the probability of guessing correctly is non-zero. The
probability in this case is evaluated over both the state distribution and the guessing
distribution.

Cautions

There are two cautions that should be mentioned with regard to repeated guessing
attermnpts in the probabilistic case.

First, we must be careful in interpreting the probability integral of constraint (4.3).
The probability p, = [y pc(z)dv(z) is the probability of correctly guessing the starting
state assuming that the state of the system is randomly distributed in accord with the
distribution v. This means that over a large number of different problem instances
satisfving v, the fraction of times that the system correctly guesses the starting state
is given by p,. It does not necessarily mean that repeated guessing during execution
of a single problem instance will yield a fraction of correct guesses that is roughly
p.- This second interpretation is correct only if the distribution v is created anew on
each guessing loop, for instance, by purposefully executing a randomizing strategy
that creates the distribution v. The point is that the actual state of the system on
a particular execution trial is some state z. If p.(z) is zero, then the system has
zero probability of guessing correctly. Unless the system is made to change state
appropriately between guesses, this probability will remain zero. Thus, even in the
probabilistic case, it often makes sense to satisfy constraint (4.2) rather than merely
constraint (4.3).

For instance, let us suppose that an incorrect guess always yields a strategy that
does not affect the state of the system, while a correct guess yields a strategy that
attains the goal. This is of course a strong assumption, but it will serve to illustrate
our caution. Since the caution holds even in this special case, it certainly holds
more generally. ldeally, we would hope that the probability of correctly guessing the
starting state on the n'* guess is given by

(4.4) (1-p)" " ps. (incorrect)
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However, as we have said, this is an incorrect interpretation of p,. Instead, the
probability of correctly guessing the starting state on the n** guess is given by

(45) [0 = @) pele)av(2). (correct)

Summing expression (4.4) over an infinite number of guesses yields unity. This
need not be true for expression (4.5).

This brings us to our second caution. It is generally true that the measure v varie:
on each guessing iteration. This is because each guess results in the execution of some
strategy that affects the state of the system. This further complicates the description
of success probabilities. Now the probability of correctly guessing the starting state
on the n'* trial depends not only on the initial distribution v, as in expression (4.5),
but also on the previous guesses. We will not examine this issue in any detail.

Success Maximization

One could also postulate conditions on u 4 for maximizing the probability of successful
goal attainment. This would involve considering the effect on the state of the system
of executing a strategy derived from an incorrect guess. After all, in some cases an
incorrect guess can still lead to goal attainment. We will not examine these conditions
here.

Comparison of Non-Deterministic and Probabilistic Constraints

The difference between the non-deterministic constraint (4.2) and the probabilistic
constraint (4.3) is the usual difference between a worst-case adversary and an average-
case behavior. If we rewrite constraint (4.2) as

(4.6) 0< inf [ xr.(z)dua() = inf wa(B,),

and if we rewrite constraint (4.3) as

(4.7) 0< [ xn.(2)d(uax v) = (wa x v)(D),

where D = {(a,z) | z € R, }, then this difference becomes clearer. In the non-
deterministic case we want each of the slices B, of D to have sufficient non-zero
measure in the space A. In the probabilistic case we merely want the set D to have
non-zero measure in the space A x X. If we go back to the example of figure 4.3,
and imagine that the starting state is uniformly distributed, then both 4 and X are
essentially equal one-dimensional intervals, with the usual measures. The set D of
successful guess-state pairs is the diagonal in the space A x X, and hence of measure
zero. If the goal were changed to a strip of finite width, then the vertical preimages
would become non-degenerate rectangles, so that D would also become a strip of
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/( /: starting state of the system
/

| Typical preimage R,

Range of preimages that contain x

Figure 4.4: If the goal line of figure 4.3 is changed to a strip of non-zero width,
then the preimages also become non-degenerate. This figure displays a typical such
preimage. It is a vertical strip of width ¢ that contains the starting state of the
system. See also figure 4.5.




4.2. GUESSING STRATEGIES 207

H¢--_——-———
»

W

Figure 4.5: This figure graphs as a function of the system’s z-coordinate the set of
all preimages of figure 4.4 that contain the state of the system. B; is the set of
all preimages that contain z, and D is the union of these sets over all z. See also
equations (4.6) and (4.7).
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finite width. Suddenly the probability of success would be non-zero, despite there
beiug an infinite number of preimages. See figures 4.4 and 4.5.3

4.2.2 Restricting SELECT to Finite Guesses

Let us focus on ensuring that the sets B, each have non-zero measure in the non-
deterministic setting, by satisfying (4.2), since satisfying this constraint automatically
ensures that (4.3) holds as well. We will do this effectively by modifying the definition
of SELECT and insisting that it only consider finite collections of covering preimages.
In other words, the index set A is forced to be finite.

It is clear that this finiteness requirement imposes a fairly strong restriction on
SELECT. In particular, the example of figure 4.3 does not satisfy the requirement.
Nonetheless, in many instances the finiteness arises naturally. Consider for instance
« set R that is covered by an infinite collection of sets {Rz}. Now suppose further
that R is bounded, and that in fact the interiors of the Rs cover the closure of R, all
in the usual topology on ®™. By compactness of the closure of R it thus follows that
a finite subcollection of the Ry must actually cover R, as desired.

As stated so far, this explanation is not completely satisfactory. Among other
things, the explanation does not properly take account of preimages that have no
interior in R™ because they lie on some surface of lower dimensionality. The main
task remaining in this chapter is therefore to make more precise the naturality of the
finiteness requirement. The explanation just given provides the basic outline of the
argument.

Forward Projections

In order to motivate the insistence on coverage by interiors of preimages, we will
consider the forward projection of a point moving with a commanded velocity that is
subject to non-zero error. We defined the forward projection in the discrete setting on
pages 94 and 102. In the continuous setting we need a time index as well, since actions
are executed over some interval of time. Thus let us define the forward projection at
time t, Fy,4(R), to be the set of configurations that the system might be in at time
t, given that it started out in the region R at time zero, and moved during the time
interval [0,¢] with commanded velocity vo, subject to control uncertainty as defined
earlier. This notation differs slightly from that used in [Erd86). If one is not interested
in any particular time, then one may consider the timeless forward projection

30f course, ignoring possible boundary effects, p.(z) is now non-zero for all z, since there is an
interval of preimages that contain z, so in fact the guessing strategy would succeed even in the face
of a worst-case adversary. Notice, however, that in order to avoid zero probabilities of success at
the boundaries one has to almost unnaturally construct preimages that extend beyond the goal.
Alternatively, one could only consider preimages R, with a in the range A = {0,1 — £], then insist
that u, have positive measure on the atoms given by the endpoints 0 and 1 - ¢, as well as non-
uniform measure near these endpoints. This is equivalent to constructing additional preimages of
width less than £ near the endpoints.
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Fuo(R) = (J Fre(R).
>0

For future reference, let us also recall the definition of a backprojection from
[Erd86). In particular, the backprojection By,(G) of some region G is the set of
all configurations from which the system is guaranteed to pass through the set G at
some time, despite uncertainty, given that the commanded velocity is vo. Effectively,
the forward projections encode the historical information available to the termination
predicate, while the backprojections encode the reachability. See {Erd86] for further
details.

For the sake of having a focused discussion, we will assume that the termination
predicate is of the type discussed in the LMT work. In particular, in addition
to the commanded velocity, the various uncertainty parameters, and a description
of the environment, the termination predicate is given the following information:
Initially, the termination predicate is given the start region. Thereafter, at every
time ¢ > 0, the termination predicate is given the current time, and the current
sensory information. Of course, a particular termination predicate may only consider
some of this information. The most powerful termination predicate, discussed in
(Mas841, remembers all information given to it. It is assumed that the termiation
predicate can compute forward projections of any set for any time, as well as form
arbitrary unions and intersections of these sets with themselves and with sensory
interpretation sets.* A termination predicate signals goal attainment when its current
knowledge state is inside a goal. For instance, consider a termination predicate that
remembers the start region. and considers the current sensory information, but forgets
past sensory information and does not look at the current time. If R is a preimage
of the goals {Gg} relative to a commanded velocity vy, this predicate will signal
goal attainment when the set Fy (R) (N B,,(x") is inside some goal Gy. Here x" is the
current sensed position and B,,(x*) is its interpretation set. More general descriptions
exist for more general sensors.

Now® suppose that whenever velocity vy is commanded the actual velocity lies in
some error ball B,(vo). Note that ¢ may depend on vy. To avoid trivialities let us
assume that ¢ < |vp|. If x € R” lies in free space and t is non-zero but small enough
so that the forward projection of x lies in free space, then we have that

FVo.t({x}) = Btc(x +t Vo).

In other words, for all non-zero times the forward projection of a point in free space
is some open ball. Since Fyy(R) = Uxer Fvo({X}), this says that for all non-zero
times the forward projection of a set R in free space is an open set. Now consider the
backprojection of some goal G, relative to a commanded velocity vq and suppose that

“The term “compute” is used in a non-technical sense, that is, it is set-theoretic. Indeed, many
sets are not computable in the technical sense of computability theory. See [CR] and [Cansl] iu
some resuits on the computability and complexity of forward projections. See also [Erd84].

SRecall that B, (p) refers to the open ball of radius r about the point p € R".
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Figure 4.6: A two-dimensional friction cone. Also shown is the computation of a net
force given an applied force.

this backprojection lies wholly in free space. By construction, any preimage R under
velocity vo of G must lie in this backprojection. Suppose that R C By, (G), and that
t is a non-zero time at which the system cannot yet have encountered the goal. Then.
aver f8 R itsclf cualdins no interior, the set Fy  ((R) is open and all points in it are
guaranteed to pass through the goal eventually. Of course, in general, the set Fy,(R)
need not be a preimage of G even if R is. However. for special cases, for instance
if the termination predicate only uses the timeless forward projection and current
sensed values in determining goal attainment, and if G is closed, then this forward
projection is indeed a preimage of G (see [Erd86]). Thus there is strong motivation
for considering only preimages with non-empty interior in guessing starting regions.

Collisions and Friction

In order to account for contact with obstacles, consider how the velocity error ball
is modified by collisions with lower-dimensional surfaces in ®". We will assume that
all surfaces are piecewise linear, as is reasonable for polyhedral obstacles, and that
friction is isotropic and invariant across any such planar patch. In particular, for
hyperplanes of dimension n — 1 friction is described by an n-dimensional cone with
cone angle a = arctan u, where p is the coefficient of friction.® The axis of this
cone is the normal to the hyperplane. See figure 4.6 for the two-dimensional case in
R?. The effect of friction on the intersection of several such surfaces is determined
by the generalized damper analogue of Newton’s equations. In practice, we are
thinking of ®? and ®%. The description of friction in configuration spaces involving
object rotations is slightly more complicated. In particular, the effective friction in
configuration space may vary from configuration to configuration. Also, friction need
not appear for certain tangential motions, such as those involving pure rotations.
[See [Erd84].] For the case R?, the computation of an effective motion is determined

6We will assume that static and sliding triction are equal.
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by projecting the applied force onto the friction cone as indicated in figure 4.6. In
particular, if the negative applied force —F 4 lies inside the friction cone then there
is no resulting motion. Otherwise, the net force is given by F4 + Fg, where Fg is
a reaction force on the edge of the friction cone, whose normal component directly
cancels the normal component of F4. For generalized damper dynamics, forces and
velocities are equivalent, in the sense that the applied force is the term B vq in the
equation F = B (v — vp).

More generally, if contact exists on some plane P of dimension n — k in R, then
given an applied force F 4, an effective motion is computed as follows. One can think
of the plane of dimension n —k as being the intersection of k independent hyperplanes
of dimension n — 1. To say that the system is in contact with the plane P is to say
that it is in contact with each of the individual hyperplanes. Let the outward unit
normals to these hyperplanes be given by the vectors ny,...n;.” Then the friction
cone at the i** point of contact is given by all forces that form an angle with the
cutward normal n, that s o greater thau a = arctan u. In other words, the friction
cone is the set of forces

F| }
Fi=<F |F-n, > ———?.
{ } VI+ 42
Said differently, the set of reaction forces that can be generated by the i** hyperplane
is given by the set F,. The composite frictica cone due to contact with the plane P

1s simply the vector sum of the individual friction cones. In other words, the set of
possible reaction forces is the set Fp, where

k
Fp = {F F = ZF,’, with F; E.:r,}

1=1

Given an applied force F 4, there are two possibilities. Either the system moves or
it sticks. Consider the case in which it sticks. Then we must have that the reaction
force Fg is of the form Fr = —F4. In other words, —~F4 € Fp. Conversely, if
—F4 € Fp, then a possible motion solution is given by sticking, with reaction force
FR = -FA.

We will consider the other possibility, in which the system moves, presently. First,
let us observe that in general the effective contact may not involve actual contact with
all the hyperplanes that define the plane P. For instance, if the applied force points
away from each of these planes, that is, if F4 -n; > 0, for all = 1,... k, then
the system is effectively not in contact with any of the hyperplanes. Thus a possible
reaction force would be Fgr = 0, meaning that the motion of the system would be
through free space, along the direction specified by F 4.

In general, any subset of the k hyperplanes defining the contact with P might
actually constitute the effective contact. Any such smaller contact set defines a higher-
dimensional plane of contact. In principle one therefore needs to recursively check all

7In general, we should also allow redundant constraints and perhaps different coefficients of
friction on the different hypersurfaces. The discussion may be generalized to include these.
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these smaller contact sets for possible reaction forces. For each of these one computes
the net resulting motion, in the manner to be outlined presently. If such a net motion
is consistent with all the kinematic constraints, then it is a feasible solution to the
motion problem.

In the most general case, there may be several solutions consistent with the applied
force F4. This is particularly true when in contact with low-dimensional surfaces. The
resulting motion may depend on one’s interpretation of these contacts. For instance,
in two dimensions, contact with a convex vertex may be thought of in one of three
ways: contact with the edge on one side of the vertex, contact with the edge on
the other side of the vertex, or simultaneous contact with both edges. Thus several
possible contact states may be consistent with Newton’s equations and Coulomb
friction (or their analogues under generalized damper dynamics). This ambiguity
may introduce further non-determinism into the system’s behavior.

Let us assume that the effective contact is given by all the k hyperplanes that
define the plane P. Now consider the possibility that the system moves. We can
write the applied force as F4 = F,, + F;, where F,, lies in the normal space spanned
by the k normals. and F, is parallel to the plane P. Similarly, since contact with P
is maintained, observe that the reaction force is of the form Fr = -F, — gf, where
g > 0 and t is some unit vector parallel to the plane P. We will see shortly that
t is positively parallel to the tangential component F, of the applied force. In any
event, the net force is of the form Fxgr = F; — g t. If this vector is non-zero, then it
specifies the direction of motion, in the plane P.

Since the system is moving, and in contact with each of the hyperplanes. the
1sotropy assumption implies that the reaction force at each of the contributing
hyperplanes must lie on the edge of its respective friction cone.® Furthermore, each
reaction force must oppose the direction of motion. This says that the tangential
component of the reaction force at each of the k hyperplanes is actually anti-parallel
to the vector Fygr. In turn, this means that t is positively parallel to Fngr, and
hence to F,. We see therefore that the frictional part of the reaction forces does
not contribute to the maintenance of contact with the plane P, but merely to the
reduction of tangential motion. By construction we have that F,, = ¢; ny +- - -+ ¢k ng,
for some set of constants {c;}. It follows that each of the ¢; in the description of Fy4
must be zero or negative, for otherwise the normal reaction forces at the points of
contact would be negative, a physical impossibility. The scalar g thus may be written
as the sum g, + - - - + g&, where friction dictates that 0 < g; < —pug;, for all ¢.

In short, for contact with the plane P under applied force F 4, there are two
possibilities that do not involve the breaking of contact. First, the negative applied
force may lie inside the composite friction cone Fp, in which case the resulting motion
may be zero. Of course, under certain indeterminacies a tangential motion may be
possible as well, for instance, if we permit a set of dependent normals, that is, a

8This need not be true in general configuration spaces, such as those involving rotations, or
multiple moving objects that do not interact. In those spaces the isotropy assumption does not
hold. Generalizations of the procedure for computing net motions apply, although the specific
conclusions need not.
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set of redundant hyperplanes, along with different coefficients of friction on each of
the hyperplanes. Second, if the negative applied force lies outside of the composite
friction cone, and contact is not broken, then a tangential motion must result. If
a tangential motion does occur, then the tangential reaction force has magnitude
g=—p(c; +---ck), with ¢; <0 for all 2. The resulting motion is determined by the
net force (|F;| — ¢g) £, which points in the same tangential direction as the applied
force, but has a smaller magnitude. [Note that this only makes sense if g < |F,|.]

Forward Projections on Surfaces

The discussion of the last few paragraphs is intended partly as a quick review of
friction. The main purpose, however, is to indicate that the forward projection of a
point on a surface, by those velocities in the velocity error ball that maintain contact
with the surface, forms a set that is open in the relative topology of the surface.
In other words. suppose x is some point on a plane P of dimension n — k as above.
Consider applying a nominal commanded velocity vo subject to the usual uncertainty
considerations. There are two possibilities. Either the point moves away from the
surface, or it maintains contact. Of course, in some cases, over time the point may
be able to do both, and intermittently hop back and forth between free space and
contact space, and perhaps between surfaces of different dimensionality.

Suppose the commanded velocity is vy and that all effective commanded velocities
lie in the open ball B,(vp). Suppose further that the system is in contact with a
plane P of dimension n — k, formed by the intersection of k hyperplanes. Let the
independent unit normals of the defining k hyperplanes be given by n;,...,ns. Then
any vector can be written as v = Y% ¢,n; + A t, where the {c;} and A are scalars and
t is some unit tangent vector parallel to the plane P. Assuming generalized damper
dynamics with an identity damping matrix B, we will think of forces and velocities as
equivalent. The set of velocities in B,(vo) that can maintain contact with the plane
P is given by

k
v = Zc,»n.— + ht,for some h and t, with ¢; < 0 for all i}

=1

Bconuct = {VeBz(VO)

—VE}-P}.

U {VE BC(VO)

The set of all velocities that must break contact is given by Bureak = Be(Vo) — Beontact-
By breaking contact we mean simply that the instantaneous contact may be thought
to occur either in free space or on a plane of higher dimension. Contact state may
also be changed by other means, say by sliding off the boundary of the plane and into
free space. That may be viewed as a cliange of state, in that the system is in contact
at some time t = {5, but is in free space at time t > {,.

Finally, the set of velocities that can breal contact completely is given by
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Bee = {V € B(vo) | V- mi>0,i=1,...,k}.

These are all velocities for which the system could move into free space.

The set Beoniace is relatively closed in the ball B,(vg), so the set Bpreak is open.
More to the point, we see that the set of velocities that can break contact completely,
that is, the set Bpee, is an open set. Thus, by an argument similar to the one given
above, the portion of the forward projection that arises solely from velocities that
move through free space is an open subset of free space.

Let us focus now on the contact with the plane P, and show that the forward
projection of a point on this plane, by velocities in the error ball that can maintain
contact with the plane, contains an interior in the relative topology of the plane.
Given an applied force or velocity v, let us denote by 7(v) the resulting net force or
velocity, assuming generalized damper dynamics and contact with P. For some v.
7(v) will just be zero. that is_ no motion will result. We would like to show that the
set of net velocities, given by 7( Beontact) is a set with interior (relative to the topology
of R*=*). In fact. we will show that almost all resulting velocities are interior to
the set ©(Beontact)- The only exception will be in some cases the zero velocity. This
implies that if one only considers non-sticking contact velocities, then the forward
projection of any point will be an open set in the relative topology of the contact
plane. The argument is the same as for the free space case except that now the
velocity error ball is replaced by some other open set of possible velocities. If there
are sticking velocities in the projected velocity error bail then the forward projection
of a region R will be the union of some relatively open set determined by the non
sticking velocities and the region R itself. Thus the forward projection contains an
interior. More importantly, if one is only interested in preimages, then there can be
no sticking velocities, as otherwise one could not guarantee goal attainment, so the
forward projection with respect to contact velocities is a relatively open set.

Let us therefore consider those velocities for which the resulting motion is not
zero. By the discussion above. we can write the effect of = on such a velocity as:

k k
N(ZC,’H,‘ + hf,) = (h + u Zc‘) t.
1=1 =1

Now suppose v = ht, that is, suppose all of the ¢, are zero. Then 7(v) = v, that
is. 7 restricted to velocities with no normal component is just the identity map. More
generally, if one fixes the constants {c,} at some set of values, then one can think of =
as a self-mapping between tangent vectors in the plane of contact. The mapping is a
form of shifting given by 7. )(k t) = (A+c)t, withc=p ) % ¢.and h > 0. Clearly
Tt is well-defined for all non-zero tangent vectors. However, the assumption that
the applied velocity results in motion means that we are only applying = to vectors
for which A > —c > 0. Let us define two sets of tangent vectors in the plane of
contact. Let V; be the set of all tangent vectors which can be written in the form
ht with A > 0, and let V. be the set of all tangent vectors ht with & > —c. Then
T{c,} i @ one to one mapping of V. onto V. Thus 7} possesses a two-sided inverse,
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mapping V; onto V.. The inverse is given by r{”cf}(é’f) = (£ —¢) t, for all unit tangent
vectors t and scalars £ > 0. It is clear that this inverse is a continuous function, and
so we see that 7(,} is an open map from V; to V.

Now fix a particular non-zero image vector of 7 applied to Bcontact- This vector
is of the form w(v), for some vector v = f=1 cin; + ht in the set Beogac, With
h>—c=-— Zf«;l ¢; 2> 0. Consider the set of velocities

k
W= Zd,-n,-+v,, with |d; — ¢;| < § and |v, — ht| < %ﬂé}

=1

0= {W € Bcom.u:t

Here 6 is some small positive number, and v, is any tangent vector parallel to
the contact plane P. The set O is an open neighborhood in Beoniace of the
velocity v. If é is chosen small enough then one can guarantee that all the
vectors in the right part of the set definition actually lie inside the velocity error
ball B,(vp), since it is an open ball. This says that O wholly contains the set
O, = {w ; w = Ef___l ¢ n; + vy, with |v, — hf:l < "—;—cé} Note that in this last set
the normal components are all the same, determined by the {¢;} that define v.
Viewing this set as a subset of the tangent vectors to the contact plane P, we see that
it is relatively open and a subset of V.. But this says that the image 7. }(O,) is an
open neighborhood of 7(v), and thus 7n(O,) is a neighborhood of #(v). This shows

that 7(Beoniact) — {0} is an open set in the topology of "%,

Contact Changes

Finally, suppose that we model obstacles as closed sets. Additionally, each plane
of any dimension is a closed set. Now consider the possible contact changes for a
portion of the forward projection that is an open set relative to its contact state. For
instance, consider an open ball of dimension n — k on a plane of dimension n — k, and
consider its collision with a subplane of dimension n — k —¢. The iatersection with
the lower-dimensional plane is necessarily relatively open in that plane. Conversely,
suppose that at time t = ¢, an open ball of dimension n — k — i prepares to lift off
from from the subplane of dimension n — k — ¢, moving off into the containing plane
of dimension n — k for all times ¢t > ¢;. Given only velocities for which it is possible
to move on the plane of dimension n — k, the arguments above show that this ball
forward projects into an open set in the relative topology of the containing plane for
all times t > tg.

Brief Summary

In short, we have shown that the forward projection of a set relative to an open
velocity uncertainty ball contains interior relative to each of the contact states it
defines. The argument above is not a formal proof, but it does provide some intuition
and some motivation for insisting that the operator SELECT only guess between finite
collections of preimages.
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Compactness Argument

We are now in a position to state the compactness argument more generally. First,
let us write the reachable state space X in the form

X= K,,U'HUK}UKQ,

where K; is the closure of the set of all points that lie on a plane of dimension i. This
means that K, is the closure of the set of all points in X that lie in free space, while
Ky is the set of all vertices of the obstacle polyhedra. We assume that all polyhedra
have full dimensionality, that is, are formed by sets of hyperplanes of dimension n —1.
Then we see that K, D --- D K; > K.

If we are given a region R C X, we can thus form the unique union R =
R.U---UBHRyp, where R; = RN K;. Similarly, given a collection of preimages {Rs}
that cover R. we can form the collections {Rg,},... {Rgo}, where Rz, = R:NK,.
for all 8 and :. Notice that each Rg; is a preimage since the subset of a preimage
is always also a preimage. Clearly, each collection {Rj;} covers the dimensionally
corresponding subset R, of R. If we assume that the set R is compact to begin
with. and that the preimages { Rs;} are open in the relative topology of K;, then in
fact a finite number of these preimages will cover R;. Thus SELECT can naturally
choose between a finite set of preimages. Actually, we can further loosen the openness
requirement on the preimages, and merely ask that each of the sets R, Rg; be open
in the relative topology of R,. This permits the preimages to contain some extra limit
points.®

Preimages and Forward Projections

We have tried to motivate the discussion of open preimages or preimages with interior
by showing that the forward projection naturally contains interior in each dimension,
for tasks in R" that involve polyhedral obstacles with simple friction, and that use
generalized damper dynamics subject to non-vanishing control uncertainty. If one
therefore insists that preimages at least contain their forward projections for a small
period of time, then one can guarantee that preimages contain interior as well.

Clearly there will still be some problems for which infinite coverage by preimag s
without interior is unavoidable. In such cases, if the unrestricted version of SELECT is
to function properly, one must satisfy one of the conditions (4.2) or (4.3). In general,
this will entail looking at each particular guessing step individually. then determining
an appropriate index set A and guessing distribution u4. However, for many problems
one may restrict SELECT to finite decisions.

Let us briefly also indicate why it is reasonable to insist that preimages contain
part of their forward projection. For special cases, as we have noted, it is almost
automatic. More generally, the argument is very similar to the one used to establish
the openness of the forward projection. Consider a preimage R and its forward

SFor instance the semi-open interval [0,1) is open in the relative topology of the closed interval
(0,1).
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projection Fy,.(R) at some time ¢t > 0. We claim that if ¢ is small enough, then
a relatively open subset of this forward projection is itself a preimage. This does
not quite say that R contains any interior, but it does say that there is a preimage
naturally derivable from R that does contain interior (in fact is open). In order to
make the argument we must make two further assumptions: (1) That the sensing
uncertainty is a non-degenerate open ball, and (2) that there is some minimum time
tmin > 0 before which goal attainment and recognition is impossible from the preimage
R. One can probably remove this second assumption, but we will not worry about
that here. Additionally, we will focus on the case in which the forward projection lies
in free space and in which the only sensor is a position sensor.

In order to be concrete, let us suppose that R is a preimage of some collection of
goals {Gp}, relative to the commanded velocity v and some termination predicate.
Suppose that the control uncertainty ball has radius € = €(vy), while the position
sensing uncertainty ball has radius ¢,. Choose t, > C to be smaller than both t;,
and % V;l'*'f' In other words, in the time tp, the furthest any point can move is half
the raéius of the sensing uncertainty ball. Now consider any subset Ry of R whose
diameter is less than €,/2. Let F = Fy, 4 (Ro), which is a relatively open subset of
Fyoto(R). We would like to establish that F' is a preimage of the collection {Gz},
relative to the commanded velocity v, and the same termination predicate as that
used for the preimage K.

In . der to establish that F is a preimage we must show that any trajectory
starting in this set is guaranteed to terminate recognizably inside a goal. First, let us
note that all trajectories emanating from F’ must pass through a goal by the definition
of R and ty,. Next.!° consider a motion starting in F at time ¢’ = 0. Let us determine
the information available to the termination predicate at time ¢ = 0. In line with
the discussion on page 209. the termination predicate is given the start region F, the
time t' = 0, and whatever sensed value x* is returned by the sensor at time t' = 0.
In general, Xx* can be any sensory value consistent with a starting position in F. Of
course, it is possible that the particular termination predicate employed will ignore
some or all of this information. Let us denote by K. the knowledge state derived by
the termination predicate from the information it is given at time t' = 0.

Since R is a preimage, so is Ry. Consider therefore a motion emanating from
the set Ry. Fix some xo € Rp. Given an adversarial sensor, we may assume that
the sensory value returned for all times ¢ in the range [0, o) is Xo. By construction,
the forward projection of Ry at any such time is contained inside the sensing ervor
ball about xo, that is, Fy,(Ro) C B, (%) for all t € 10,to). In short, the sensors
contribute nothing over that time interval to the termination predicate’s decision.
Thus the knowledge state K available to the termination predicate at time t = ¢,
(before sensing) is some superset of F, and possibly equal to F'. Since the motion
starting from Ry at time t = 0 is guaranteed to terminate recognizably in a goal, the
motion starting from F at time t = t, with knowledge state K and sensor value x*

10We use the notation ¢’ to indicate that this time is not directly related to the clock used in
executing a motion from the preimage R.
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Figure 4.7: This figure shows a typical backprojection of a two-dimensional disk.

must terminate recognizably in a goal. Denote by K* the knowledge state formed
from K and z*. Now consider again the termination predicate that starts a motion in
the set F' at time ¢’ = 0. Recall that the knowledge state available to this termination
predicate is Kx.. It is reasonable to assume that the knowledge state K* is a superset
of the knowledge state Kx., which establishes that F is a preimage. !

One observes that a similar argument shows that the set

U FVo,t(RO)

0<lslo

is also a preimage that is an open subset of the forward projection of R, assuming that
the termination predicate does not consider time. More general forward projections
are preimages if the termination predicate only considers current sensed values.

Finite Guesses

A final comment should be made. We have thus far indicated the existence of
preimages with interior. We have not yet motivated the naturality of insisting that
open preimages cover a compact guessing region. This condition is desirable since
it ensures guessing finiteness. However, there are many cases in which the guessing

"10ne can imagine termination predicates that randomly choose starting knowledge states that
include the actual starting region, but we will exclude those. Most likely K* and Kx. are actually
equal. This is certainly true for most of the variations of termination predicates discussed in [Erd86).
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Typical (first-level) preimage

Second-level preimage

Figure 4.8: The union of all possible backprojections of the disk of figure 4.7 is a disk
of radius 4r. This figure shows how to split the disk into a finite number of regions.
A guessing strategy that cannot sense the position of the system can thus guess the
correct region with non-zero probability. If the systeni guesses that it is in the outer
ring of width 4, then it moves inward as indicated by the arrows. Otherwise, the
system guesses that it 1s in some backprojection, one of which is shown.
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region is open rather than closed. We show now, by e<ample, that this poses no
serious problem.

Consider the task of attaining an open disk in the plane. Assume that the velocity
uncertainty is given by a ball with radius ¢ = %Ivol, where v, is the commanded
velocity, as usual. If the disk has radius r, this says that one can backproject
along any direction, and obtain a cone with apex at distance 4r from the center
of the disk. See figure 4.7. Suppose that the disk is recognizable once entered.
Then each of these backprojectiors is actually a preimage, relative to a termination
predicate that only checks for disk attainment. This says that there is a collection
of preimages whose interiors cover the open ball By, of radius 4r centered at the
center of the disk. However, the interiors of the preimages do not cover the closed
ball of radius 4r. Thus, if the initial position is known to lie in B,, the finite version
of SELECT does not apply, that is, there is no finite collection of preimages that
covers By.. We note in passing that this need not be a problem if the starting
position is probabilistically distributed and constraint (4.3) holds. In other words, for
some probabilistic distributions, SELECT can successfully choose between the infinite
collection of preimages, by, for instance, guessing the argle of approach. However, in
the non-deterministic setting, constraint (4.2) does not hold, and one really does need
some finite version of SELECT. To see that this is possible, imagine shrinking the ball
B,, slightly, so that it only has radius 4r — §, with 0 < § < r. Now a finite number
of preimages covers this ball By,_s;. Thus, whenever the actual position lies in By _g,
the probability that SELECT will guess the correct preimage is uniformly bounded
away from zero. Furthermore, one can split the annulus B,, — By,_;s into a finite
number of regions, each of which is preimage of the ball By,_s for some velocity and a
termination predicate that keeps ‘rack of time. Thus one can change the problem into
a multi-step multi-guess randomization, and ensure that constraint (4.2) is satisfied.
See figure 4.8. This approach applies more generally.

4.3 Summary

This chapter explored in the continuous domain the analogue to the randomized
strategies developed in chapter 3 for the discrete domain. The chapter first reviewed
the LMT preimage methodology for planning guaranteed strategies in the presence of
uncertainty. This framework was used as the basis for defining randomized strategies,
much as dynamic programming was used in the discrete domain. One of the difficulties
in the continuous case is the need for randomizing between a possibly infinite number
of decisions. The chapter exhibited conditions under which infinite decisions still
yield non-zero probabilities of success. Further, it was shown that in many cases
apparently infinite decisions may be reduced to a finite number of choices.




Chapter 5

Diffusions and Simple Feedback
Loops

In this chapter we will explore the continuous version of discrete random walks. In
continuum spaces the r-~tural analogue to a random walk is a diffusion process.

We saw in the discrete setting that random walks on graphs constitute a simple
type of randomized strategy, in which the future behavior of the system depends
probabilistically only on the current state and not on any past states. Simple feedback
loops constitute an important class of random walks, whenever the control and sensing
errors are probabilistically distributed. Recall that in a simple feedback loop the
current action to be executed is determined solely as a function of current sensory
information, without any reference to previous sensory values.

We already caught a glimpse of the bebavior of a continuous simple feedback
loop in the introductory example of section 2.4. In that example we assumed an
error distribution consisting of a fixed bias. More generally, we would like to have
a language for describing the behavior of the strategy of that example for various
distributions. In particular, we would like to determine the convergence times of the
strategy for certain simple common error distributions, such as unbiased Gaussians.
Fast specialized strategies are known in these cases. The randomized strategy is
formulated to succeed independent of the actual error distributions, so long as these
distributions satisfy cectain bounds. However, the speed of convergence of the strategy
depends on the actual error distributions. If the speed of convergence is reasonably
quick in the simple settings then it makes sense to employ the generally applicable
randomized strategy rather than to seek and employ a specialized fast strategy for
each possible instantiation of error distributions.

In the discrete setting the notions of progress measure and expected progress
provided a convenient tool for discussing the behavior and convergence times of
random walks. These same notions carry over to the continuous setting. Indeed
the notion of an expected local velocity arises in the very definition of a diffusion
process. ~

This chapter will briefly review some basic facts from diffusion theory, then turn to
examples. We will not restate or reprove all the results from discrete random walks in
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the continuous setting. Instead, the main aim of this chapter is to develop an approach
for analyzing simple feedback strategies of the type discussed in section 2.4. These
strategies execute actions designed to make progress along some progress measure
whenever the current sensory information permits such progress, and otherwise they
execute a randomizing action. The randomizing actions ensure that the system will
not become stuck hopelessly in some region from which progress is impossible. We
will focus in particular on a fairly detailed analysis of the randomized strategy for
attaining a two-dimensional hole, as in the example of section 2.4.

5.1 Diffusions

A diffusion process is basically the continuous version of a random walk. The
important quantities that govern the behavior of a diffusion process are the local
drift and variance at each point in the state space. These measure the expected
velocity at each point and the variance in that expectation. Additionally, diffusion
processes satisfy a continuity requirement, which ensures that nearly all sample paths
of the process are continuous. This requirement therefore excludes processes that
make random jumps, such as the first randomized strategy suggested for the example
of section 2.4. Other processes excluded are those in which history plays a role in
determining the future behavior of the system. In other words, diffusion processes
must be Markovian.

The following material is a condensed version of the discussion of diffusion
processes found in [KT2] and [FellerII].

First, let us assume that the state space of our diffusion process is R", and let us
denote the process by {X(t),t > 0}. In other words, X(t) € R" is a random variable
describing the state of the system at time ¢t. The Markovian nature of the process
means that there exists a function Q:a¢(x,y), which describes the probabilistic
transition function of the process over the time interval [t,t + At]. This function
plays the role of the probability matrix (p;;) in the discrete case. In particular, if the
system is in state x at time t, then the probability that it will be in a state in the set
Y at time t + At is given by

-/Y Qrat(x,y)dy.

The continuity condition then takes the form,

lﬁltr}}) -A_t ly—x|>6 Qt,At(x7 )’)dy = Os
for all positive 8.

In keeping with standard notation, we will use the symbol “Ef - ]” to denote the
expectation of whatever “.” represents. The probability space for computing this
expectation will generally be clear from context. Following [KT2], we will let A,X(t)
be the change in the process over time interval h, that is, Ay X(t) = X(t + k) — X(t).
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The local or infinitesimal drift u(x,t) and variance o?(x,t) are given by the
formulas: !

(5.1) B(xt) = lim=E[AX(0)X(0) = x),

(52) o(x,8) = lm7E{MX(OP|X(t) = x].

Here g is a vector of dimension n that represents the expected velocity of the process,
while o and {A,X(¢)}* are matrices of dimension n x n that essentially measure
the autocorrelation of the process. We will also refer to local drift as ezpected
infinitesimal velocity and as ezpected velocity, indicating that this notion of velocity
is a probabilistic average over possible displacements.

As pointed out in (KT2], under certain regularity conditions, a Markov process is
known to be a diffusion process if the following condition holds for some p > 2. The
limit is assumed to exist uniformly in x over any compact subset of the state space.

(5.3) lim %E[ ARX (P | X(t) = x] = 0.

5.1.1 Convergence to Diffusions

For the applications in which we are interested the resulting strategies are not
diffusion processes. This is because sensing and action generally occur at discrete
time intervals, rather than continuously, so that the process is not strictly speaking
Markovian at each location and instant of time. A correct description of these
strategies would therefore model each as a sequence of actions executed in a continuous
space at discrete, not necessarily regularly spaced, time intervals. For each action
one would define a probability transition kernel Q as above, then chain several such
actions together by convolving these kernels in the manner outlined by the Chapman-
Kolmogorov equatic.a.? However, this approach obscures some of the basic issues that
are of concern to us, namely whether the process is making progress towards the goal,
and if so, how fast it is moving. Fortunately, many discrete time processes may be
thought of as part of a sequence of such processes that converges to a diffusion process.
In such cases the diffusion process may well approximate the discrete-time process.
In these cases, an analysis of the diffusion process provides as well an approximate
analysis of the discrete-time process. We will not worry about the details of such
approximations, but simply point to [KT2] for a brief introduction. In this chapter
we will assume that our discrete representations may be approximated by diffusion
processes. The -easonableness of this assumption will become clear once we exhibit a

1t is assumed that these limits exist.
2See [Fellerli], page 322.
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process and note how its dependence on small increments of time & satisfies conditions
(5.1), (5.2), and (5.3).

For the sake of example, we present here the convergence of a sequence of discrete
random walks to the most basic of diffusion processes, namely the Brownian motion.
This example is taken from [Ross], page 184.

We define a random walk on the the real line ® with cycle time At and step size
Az. This means that at each of the discrete points in time At,2At,... the process
will move either to the right or to the left by Az, each possibility occurring with
probability 1/2. The process initially starts off at the origin. Let X(t) be the random
variable denoting the position of the process at time t. Then

X(t) = AI(XI + - 'Xl_t/AtJ)s

where X; is determined by the i** step, that is, X; is either —1 or +1, each with
probability 1/2. The X; are assumed to be independent. Therefore E[X;] = 0 and
E[X?) =1 for each i. Thus, observe that

Lt/ At
E(X(t)) = Az Y E[X|]

1=1

= 0,
and
Var(X(t)) = E((X(t)?)
Lt/ At
(5.4) = (Az) Z E[X})

- (o[

Now suppose that one lets both Az and At go to 0. This cannot be done
arbitrarily, since the variance (5.4) should go neither to zero, which would imply
a deterministic and, in this case, unmoving process, nor to infinity, which would
imply complete uncertainty. This says that one must, in the limit, take Az = cv/At,
for some constant ¢ > 0. In that case E[X(t)] = 0, while Var(X(t)) converges to c%t.

The resulting process is a diffusion process known as Brownian motion. Observe
that the central limit theorem implies that X(¢) is normally distributed, with mean
0 and variance c?t.

A similar limiting procedure may be used to obtain a Brownian motion with non-
zero infinitesimal drift.
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5.1.2 Expected Convergence Times

In the discrete setting we computed convergence times by setting up a set of linear
equations that related the expected convergence times at different states. The
coefficients in these linear equations were determined by the transition probabilities.
In the continuous setting the analogue of a set of linear equations is a linear differential
equation. For diffusions, the coefficients of this linear differential equation are
determined by the infinitesimal parameters. Solving the linear differential equation
with appropriate boundary conditions yields the expected times to reach some goal.
This material may be found in any standard text on diffusions. See for instance [KT2]
or [DynYush]. We will focus on time-homogeneous diffusions. This simply means
that the transition kernels Q; a; are independent of ¢, implying that the infinitesimal
parameters are independent of ¢ as well.

Given a diffusion in R" with infinitesimal parameters u(x) and o?(x), one can
define a linear operator L, whose coeflicients are determined by these parameters.
Let us write a point of the state space as x = (z,,...,z,). Correspondingly, we have

[l(X) = ()ulv e -al‘n)’

and

oh(x) ... of.(x)
o'(x) = k : :

02, (X) ... Ona(x)
Here o7;(x) is the infinitesimal cross-correlation of z; and z;, determined by equation
(5.2). The second-order linear operator L is then given by

Now consider an open region Q in R* with boundary Of2. Subject to certain
regularity conditions, the expected time to exit the region from a point x € Q is
given by the function 7(x), where 7 satisfies the following partial differential equation
and boundary conditions

(5.6) Lr(x) = -1,
(5.7) with 7(x) = 0 for x € 99.

More complicated boundary conditions may apply for more complicated behaviors.
For instance, the boundary may consist of two parts, one of which defines the
boundary of the goal 3G, and the other of which simply specifies the edge of thc
workspace 3W. This corresponds in the discrete case to the random walk example of
page 124. There we were interested in attaining the origin, while specifying reflection
of the random walk at the endpoint a. Similarly, in a continuous domain, one would
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specify 7(Xx) = U tor x € 9G, and :;i = 0 for x € 8W. Here n(x) is the outward
normal to the boundary 8W at the point x. Insisting that the normal derivative
of T be zero at the boundary is the manner in which one specifies that the process
reflects at the boundary.® In general, one cannot specify the boundary conditions
arbitrarily. For instance, certain points on the boundary may not be reachable, given
the intensity of the expected drift near these points.

Notice that for pure Brownian motion in ®", with unit variance, the differential
equation (5.6) reduces to a form of Poisson’s equation:

(5.8) Vir = -2,

with appropriate boundary conditions.

5.1.3 Brownian Motion on an Interval

Solving equation (5.6) can be a formidable task. A common approach is to use the
method of Green’s functions. However, for some examples the differential equation
is easily solvable. One such case is given whenever the coefficients in the operator L
are constants. We will look at this case for a diffusion on a subset of the real line.
namely the interval [0,a]. This example will also demonstrate the relationship of the
discrete and continuous cases. Recall the discrete case was analyzed on page 124.

With constant infinitesimal parameters, the one-dimensional diffusion is simply a
Brownian motion with drift. Let us denote by o? the constant infinitesimal variance,
and by u the constant infinitesimal drift. Note that o? is non-negative, but g can
be any real number. We will assume that the goal is given by the origin, and that
reflection occurs at the point a. Thus equation (5.6) becomes:

(5.9) %a’ (z) + p7(z) = —1,

with boundary conditions 7(0) = 0 and 7'(a) = 0.

First, let us deal with some special cases. If 0> = 0, then the process is
deterministic. In particular, the system moves along the real line with velocity u. If
this velocity is strictly negative, then the origin can be attained, otherwise it cannot.
Thus, whenever u < 0, we see that a solution to (5.9) is given by r(z) = —z/u. Notice
that in this case the second boundary condition 7’(a) = 0 cannot be satisfied, which
is consistent with the fact that (5.9) is now a first-order linear differentiai equation.

With this special case out of the way, let us assume that 0 > 0. First, let us turn
to the case of a pure Brownian motion, with no drift, that is, with 4 = 0. In that
case, the solution to (5.9) is given by

r(z):%x (2a — z).

3See [DynYush], page 149.
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Notice the same quadratic character of the solution that we observed in the discrete
setting.
Finally, in the case that 02 > 0 and p # 0, we have that

2
T(z) = AN AR (1 - e'zﬁ:') .

—u 242
Again notice the strong similarity to the discrete case. In particular if 4 is negative,
then 7(z) < —z/u. Furthermore, if a is fairly large with z < a, then 7(z) = —z/u.
In other words, the expected time to reach the origin is essentially the distance to the
origin. divided by the expected velocity of approach. Thus, with drift in the correct
direction. the diffusion behaves almost like a deterministic process.

We see then that the infinitesimal drift in the continuous setting has strong
similarities to the expected velocity at a state in the discrete setting. These similarities
carry over to the labelling of states by one-dimensional quantities and to the expected
infinitesimal velocity relative to such labellings. In particular, one can transform the
state space so that the labelling corresponds to the expected time to attain some goal.
In general. given a smooth non-negative labelling that is zero at the goal, if the local
drift relative to this labelling is negative at every point and uniformly bounded away
from zero. then one can obtain a simple upper bound for the expected time to reach
the goal. We will not formally develop these issues in the continuous setting, merely
take our lead from the discrete results.?

5.1.4 The Bessel Process

A very important diffusion process is the Bessel process. This process is a one-
dimensional diffusion that measures the distance from the origin of a point undergoing
a pure Brownian motion in ®". Our interest in this process etorie diractl: from the
natural labelling provided by a distance measure. In particular, if one can execute a
randomized strategy that makes sufficient expected progress relative to a measure of
distance from the goal, then one can be assured of essentially linear convergence times.
In other words, the expected convergence times are proportional to the distance from
the goal, or better. The simple feedback loop introduced in section 2.4 provides a
two-dimensional instantiation of this problem, one which we will examine extensively
in the rest of this chapter.

Unfortunately, pure random motions will not make local progress relative to the
distance measure in R". We saw this in the discrete setting, and it appears again in the

*In order to briefly indicate the relationship between the continuous and discrete settings, suppose
that we define the expected infinitesimal velocity relative to some labelling £ :  — R of the state
space as v(x) = limajo $ E[An€(X(t))|X(t) = x]. This is the natural analogue of the expected
infinitesimal velocity in ®". The theory of semi-groups tells us that in fact v(x) = (L£)(x), where L
is the linear operator (5.5) associated with the diffusion. Thus, if we set £(x) = 7(x), the expected
time to attain the goal, then essentially by definition (equation (5.6)) the expected infinitesimal
velocity relative to the labelling must be constant, that is, v(x) = —1 for all x € Q. This is precisely
the result that we proved in the discrete case. See [Fellerll] or [KT?2] for a discussion of semi-groups.
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continuous setting. The expected convergence times to attain a ball about the origin *
are on the order of |x|*. Thus one would need to dilate the state space polynomially in
order to see local progress. In order to obtain convergence times that are linear in |x|
one must hope that one’s sensors are good enough to overcome the natural outward
drift of a randomized strategy. Clearly, this is not always possible. For instance, in
the example in section 2.4, for certain approach directions the sensing bias forces the
system into a region within which sensing is useless. Only pure randomizing motions
are possible. Of course, the strategy is guaranteed eventually to attain the goal,
independent of the sensor distribution. One question is whether for sufficiently nice
sensors the strategy converges quickly. In answering that question, the Bessel process
plays an integral role.

Let us define the Bessel process and exhibit its infinitesimal parameters. We will
not derive these parameters nor prove that the Bessel process is indeed a diffusion.
but instead refer the interested reader to [KT1] and [KT2]. Later. when we examine
the two-dimensional feedback strategy, we will essentially derive the infinitesimal
parameters as part of a more complicated derivation.

Let X(t) = (Xy(t),..... (n(t)) denote a pure Brownian motion in ®*. Thus the
infinitesimal parameters of X(t) are given by

p(x) = 0,
o*(x) o’L,

where I, is the n x n identity matrix.
The Bessel process is given by {Y(t),¢ > 0}, with

Yy = |3 (X(0)"

1

n
=

The infinitesimal parameters of this process are

n—1
2y

of,(y) = o2

1

pyly) =

In other words, the infinitesimal variance is the same as for the underlying Brownian
motion, but now there is a natural drift away from the origin that is inversely
proportional to the distance from the origin.

In deriving these parameters, one approach is to first determine the infinitesimal
parameters for the process Z(t) = Y(t)? from basic principles, then use the following

5This assumes that n > 2 and that the domain of diffusion § is bounded, say, @ = B", the
unit ball in R". For R’ the expected time is on the order of |x|?, while for R? it is on the order of
Ix{? log |x|, as we have already noted.
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fact® to obtain the infinitesimal parameters for Y(¢). Specifically, if Z(t) is a regular’
one-dimensional diffusion on some interval in R with infinitesimal parameters uz(z)
and 0%(z), and if g : ® — R is a strictly monotone function with continuous second
derivative, then Y(t) = g(Z(t)) is a regular diffusion with infinitesimal parameters

(5.10) arly) = 304(2)9"(2) + ual2) g(2),

(5.11) af(y) = o%(2) (d'(2))

where y = ¢(2).

5.2 Relationship of Non-Deterministic and
Probabilistic Errors

Before we are able to analyze the two-dimensional simple feedback loop of section 2.4
for nice error distributions, we must settle on some relationship between the model
of non-deterministic error assumed by the strategy and any probabilistic distribution
of errors. This will not be as straightforward as one might wish, and we will have to
make some arbitrary choices.

Recall that the model of uncertainty assumed by the preimage methodology
and by the randomizing example was that of unknown but bounded uncertainty.
In other words, actual values were assumed to lie in some uncertainty ball about
nominal values, but no particular distribution of errors was assumed. However, in
any particular case. the error will be distributed in some specific, although possibly
unknown fashion about the nominal value. Consider the case of a probabilistic error
distribution. Suppose, for instance, that the non-deterininistic model of error is a
sensing error ball of the form B(x). This means that whenever the actual position
is x, the sensor returns a value x* within distance € of x. Suppose further that the
actual error distribution is centered at x. Let p, be the probability that the observed
sensor value x* will lie further than distance r from the actual position x of the
system. In symbols, y, = P{|x* — x| > r}. We would like to define the radius ¢
of the non-determinisitc sensing error ball in terms of these probabilities. If there is
some r for which p, = 0, then it makes sense to take € to be the infimum of all such
r. If p. > 0 for all r, then vue may wish to settle on some threshold §, and take €
to be the smallest r for which p, < §. Similarly, if x* is biased with unknown bias
whose magnitude is bounded by by, then one may first wish to compute r as above
assuming no bias, then take ¢ to be ¢ = r 4 b,,. The same approach applies to other
uncertainties, such as control unceitainty.

As an example, consider a two-dimensional sensor with a normal distribution. In
particular, suppose the sensor has no bias, that the variances along the two axes

§[KT2], page 173.
"This means that every point is reachable from everv other point. See [KT2].
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are identical, and that the measurements along the two axes are uncorrelated. This
means thai if the actual location is at the origin, then the probability of seeing a
sensor value (z,, z;) is given by the density function

1 ‘2+,2
e~ 247

2ro?

p(zy1,23) = ,

where o2 is the variance of the measurement along each dimension. A reasonable
choice for the radius € of the sensing uncertainty ball might be ¢ = 30. This
corresponds to a certainty threshold of approximately 98.9%.

5.2.1 Control Uncertainty

While this relationship between uncertainty balls and probability distributions seems
very straightforward, there are some subtleties. Let us focus first on control
uncertainty, then return to sensing uncertainty. Consider again a two-dimensional
problem as above, and suppose that whenever one commands a velocity v, the actual
velocity ® is normally distributed. with the error distributions along the two axes being
independent and unbiased and having equal variances. This variance will generally
be a function of the commanded velocity, so we will denote it as g?(v). Similarly,
within the unknown but bounded model of uncertainty, the actual velocity is assumed
to lie within some ball B,(v). Here too the radius ¢ is a function of the commanded
velocity v. A common approach is to assume that this radius is proportional to the
magnitude of the commanded velocity. In short, the unknown but bounded model of
uncertainty would say that the actual velocity v* satisfies

(5.12) tv* — v| < €, vl

for some constant ¢, > 0. Rather than writing B,,v|(Vv) for the set of v* satisfying
constraint (5.12), we will henceforth write velocity uncertainty as B, (Vv), with the
understanding that ¢, refers to an error radius that is proportional to the magnitude
of the commanded velocity.

In relating the error-ball and probabilistic models as we did above, one might
therefore take 3o(v) = €. This says ihat 30(v) = ¢ |v|, and hence that o(v) =
Je v

We should try to interpret these formal manipulations, and determine whether
they make any physical sense. First, let us observe that we have specified uncertainty
in terms of velocity, but that we are really interested in position. After all, an
action entails executing a velocity for some period of time. Within the error-ball
model of uncertainty, an action specifying nominal velocity v for time At means that
the change in position is non-deterministically given by Atv*, with v* € B (v).?

8This is in free space. In contact space, we modify the velocity as determined by the generalized
damper equation (4.1).

9For more general error sets, such as non-convex error sets, this is not correct, but generalizations
are possible.
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Said differently, the change is position is given by Az, with Az distributed non-
deterministically in the ball Ba., v|(At V). Suppose that we now translate this non-
deterministic representation into the probabilistic one for an unbiased Gaussian error,
in the manner just outlined. In two dimensions this means that the set of position
changes is distributed normally about Atv with standard deviation ¢ = ¢, |At v|.
Looking at this carefully, we should notice a peculiarity in the probabilistic setting.
In particular, if instead of commanding velocity v for time At, one repeatedly
commands velocity v for time T%'tﬁ’ repeating this 10000 times, then one should
improve considerably the fina! accuracy of the desired motion. In particular, the
central limit theorem suggests that the final position will be distributed normally
about Atv, but now with standard deviation o/100. Indeed, if one passes to a
diffusion process, that is, to a process in which the motion is commanded repeatedly
for infinitesimal amounts of time, the motion actually becomes deterministic. In order
to see this, consider the infinitesimal drift and variance. The infinitesimal drift is:

it

B(x) = lim 2Bl AX() 1 X(t) = x]

.1
Rt

i

= V.

In order to compute the infinitesimal variance, notice that we only need to compute
the variance in the z; direction (where x = (z,,;)). This is because the variance
in the z, direction is identical, and because the cross-correlations are zero by
independence. Thus, writing v = (vy, v3), we have that

oh = lmE[{8nn(t)) 1 X() = x]

RRTING N B NPT 22}
= lﬁxolh {gevh [vi® + A v

T 1 92 2}
= limh {g &M +of

= 0.

In short, we sce that the expected infinitesimal velocity is just the commanded
velocity, and that the infinitesimal variance is zero. This implies that the process
moves deterministically from x in the direction v, which does not agree with the non-
deterministic error-ball representation. Thus there seems to be a conflict between the
two representations. One view is that tl = problem arises in the non-deterministic
model because we have not modelled the velocity error radius as a function of
time, but only as a function of the commanded velocity. Another view is that the
problem arises in the probabilistic model, at least for Gaussian errors, because the
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variance in the change in position is proportional to the square of time. In order to
model non-vanishing error, the change in time At should appear with at most linear
order. A third view is to accept the apparent discrepancy, by realizing that the non-
deterministic model may simply conservatively overestimate the motion error. It may
indeed be the case that the errors exist as stated both in the non-deterministic and
probabilistic cases, but that the non-deterministic model simply does not capture the
nice averaging effect that comes into play by the central limit theorem. After all,
the non-deterministic model represents a whole collection of possible distributions,
including those with biases. For some of these distributions one will see the nice
averaging effect, but not necessarily for all.

Nonetheless, this leaves us with a choice as to how we want to represent
probabilistic errors once we pass to a diffusion analysis of randomized strategies.
One possibility that reconciles the first two explanations above, is to model the
error in velocity as white noise. This is a standard approach taken in the study
of optimal control (see, for example, [Stengel]). Instead of having an error that grows
proportionally to the change in time, one has an error that grows proportionally to the
square-root of the change in time. While this implies less error over long motions, it
captures the presence of non-zero error over infinitesimal amounts of time, that is, the
infinitesimal variance is non-zero. Thus, in terms of our previous representation, the
infinitesimal drift is v, which is just the commanded velocity, while the infinitesimal
variance is of the form o, = 02, = 02 > 0. This says that after v has been executed
for time At, the variance in position at that point is on the order of At c?. Relating
this to the non-deterministic model, we see that error balls in this case must be
modelled as functions of time, with the position error ball at time At having radius
e, V| VAL

For simplicity we will stick to the error model that does not capture the time-
dependency. This implies that for sufficiently nice velocity distributions, if the
commands are issued quickly enough the resulting effect will be a deterministic
motion. That may seem to be a bit generous. However, in terms of the diffusion
analysis later in this chapter, the significant terms will arise from the variance
associated with the guessing of motions rather than from errors in the commanded
velocities. Furthermore, once the analysis is complete it will be easy to add in extra
terms that capture a non-vanishing infinitesimal variance.

5.2.2 Sensing Uncertainty

A similar problem exists in reconciling the different representations of sensor errors.
However, the problem manifests itself slightly differently. In particular, a strategy that
employs an unknown but bounded representation of sensing uncertainty may make
decisions that differ radically depending on whether the sensed value lies within or
beyond some distance of the goal. For instance, in the randomized strategy of section
2.4, if the sensed value lies outside of the position sensing uncertainty of the goal,
then the strategy will move towards the goal, while otherwise it will execute a random
motion. One immediate problem is that in the probabilistic case the sensor value
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may be distributed over an unbounded continuum. However, physical devices usually
have a limited range, so the approximation of using a sufficiently large multiple of the
standard deviation as the error radius is reasonable. A more pronounced problem is
given by the time-dependence of sensor errors. For instance, suppose that a sensor
reading is polluted with white noise (or some physically realizable approximation). In
a very informal sense, white noise is the time derivative of a Brownian motion. The
result of a sensor reading is determined essentially by a random walk in the space
of sensor values, but normalized by the time required to obtain the sensor reading.
If we imagine that the sensor returns a reading instantly, then the variance in that
reading will be infinite. It is only by averaging over a finite extent of time that the
sensor value assumes any meaning. However, the variance of the error in this reading
is time dependent, and thus so is the radius of an error ball in the non-deterministic
representation.

Let us make all of this a little more precise. Let us suppose that a sensor value s
is computed by averaging a white noise process {w(t),t > 0} over some small time
interval. This means that 1°

1
s= /Atw(t)dt.

Taking expectations, we see that E[s] = 0, while !

EfssT) = A—ltf L Bw@wT(rjatar

For a Gaussian white noise process, the covariance function is a delta-function,
since by definition white noise is completely uncorrelated over time. Thus

Elwt)wl(r)) = Aé(t —7),

for some constant covariance matrix A. If the noise is symmetric and uncorrelated
across different dimensions, then A is of the form A = AI,, for some positive constant
A. In any event, we therefore see that

1
— — r)dtd
N /A [ Ad(t - r)dudr

A
At

E[ss”]

In short, if the sensing error arises from a white noise process, then the variance
in the error depends very much on the timing constants of the sensor. In particular,
the longer the averaging process, the better the sensing results. This implies that a
strategy that assumes a bounded error ball in making sensor-based decisions must fix

10See (Brown), page 254.
f v is a column vector of dimension n, then vT denotes its transpose, and vvT is a matrix of
dimension n x n. Thus E[vvT] measures all the covariance terms.
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a particular minimum sensing time, in order to be sure that the results fall within
that error ball with high enough probability. Said differently, for every sensing error
ball, the system tacitly is assuming a certain timing characteristic that makes the
error ball valid. One must therefore be careful when making statements that involve
small changes in time. These simply are not modelled in the preimage methodology
as set forth in chapter 4. Formally one could include time-dependent sensors fairly
easily, by modelling both actions and sensory operations as functions of time. This
does however complicate the description of preimages since now the response time of
the termination predicate plays a role. This path leads into the domain of control
theory. We will not follow this path, but simply assume that sensors return values
instantaneously.

The previous discussion generalizes to the case of a biased sensor. In this case
the maximum magnitude of the unknown bias in the probabilistic model is added
to the radius of the bounding error ball of the non-deterministic model. The timing
characteristics are not affected by the presence of a bias.

Let us say that the assumption of an instantaneous sensor is reasonable whenever
the time interval At used to determine the error radius of a sensing uncertainty
ball is significantly smaller than any other time interval used in executing a sensor-
based strategy. In other words, if all motions are executed for some time interval of
considerably greater order than At, then one may regard the sensor as instantaneous,
ignoring the dependency on At. In the upcoming diffusion analysis of a simple
feedback loop, his condition is not satisfied, since computing instantaneous expected
velocities and variances involves shrinking all time intervals to zero (see equations (5.1)
and (5.2)). However, if we take the view that the diffusion analysis approximates a
discrete-time process in which the timing constants of the sensors are considerably
shorter than all other timing constants, then we may continue to regard the
assumption of an instantaneous sensor as reasonable. We will make this assumption,
bearing in mind that a more complete analysis should consider a framework in which
error balls are time-dependent.

5.3 A Two-Dimensional Simple Feedback Strategy

The tools are now in place for analyzing the strategy outlined in section 2.4 in
the special case that the sensing and command errors have unbiased Gaussian
distributions. The reason that we would like to analyze the strategy for this special set
of sensing errors is to determine how well the strategy behaves when the uncertainty is
fairly nicely behaved itself. We know that the strategy will always succeed eventually,
independent of the error distributions, so long as these distributions yield the error
balls assumed by the strategy. However, one would like the strategy to converge
reasonably quickly when the error distributions are nicely behaved. This is because
there are well-known optimal control strategies in such cases (see, ..r instance,
[Stengel]). While the randomized strategy suggested in this thesis clearly cannot be
optimal, it will nonetheless converge reasonably quickly for a wide range of starting
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positions. Thus one can be assured that if the sensors happen to be fairly well
behaved, then the strategy will converge quickly, and otherwise it will converge. Thus
one does not need to know precisely how the sensors are behaved, but can rely on a
general strategy.

The Task

Let us begin by restating the task and the strategy. The task is to attain a disk of
radius r > 0 centered at the origin of the two-dimensional plane. It is assumed that
the goal is recognizable, that is, there is a one-bit sensor that signals goal attainment.
Additionally there is a position sensor, which has an error ball with radius ¢,. Shortly
we will assume that the error distribution is Gaussian, but the statement of the
strategy does not assume any particular distribution. The system is assumed to be
a first order system, with velocities as commands. The error in the actual velocity
executed is likewise assumed to be represented by an error ball of radius € = ¢, |v|,
where v is the commanded velocity.

The Strategy

The strategy operates as follows. The basic idea is to move towards the origin when
doing so will decrease the distance for all possible interpretations of the current sensed
position, and otherwise to execute a random motion. We will model the random
motion as a Brownian motion, and analyze the whole process as a diffusion. However
it should be understood that this is just an approximation to the actual discrete-time
process, since the strategy in general will include a delay due both to sensing and
motion execution.

It is possible to improve this strategy by taking account of the goal, and of
preimages of the goal. In particular, rather than trying to decrease the distance
to the origin, a strategy could try to decrease the distance to the goal. Additionally,
rather than choosing a completely random motion when it is impossible to decrease
the distance to the goal, the strategy could guess between covering backprojections of
the goal. We have implemented various simulations of these more knowledgeable
strategies, but for our purposes here we will focus on the simple form of the
sensing-guessing strategy. [The term “sensing-guessing” derives from the strategy’s
use of both sensor-based motions and random motions, coupled with the view of
randomization as a means of guessing the direction to the goal.]

Reducing Distance to the Origin

First, let us determine the conditions under which it is possible to reduce the distance
to the goal. Consider figure 5.1. Instead of writing points as x = (z,,z;) we will now
write them as p = (z,y). The sensor value is at the point (k,0), with £ > 0. Since
only the distance from the origin is of importance, we can assume that the sensor value
lies on the z-axis, as in the figure. In this figure it is possible to reduce the distance
to the origin for all possible interpretations of the sensor value. This is because the
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velocity error

v = (-1, 0)

Figure 5.1: For all interpretations of the indicated sensed position, the distance to
the goal may be decreased.
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possible locations t(p)

Figure 5.2: This figure shows the maximum time ¢(p) that the velocity v = (—1,0)
may be executed before the system might move further away from the origin than it
is at the start of the motion. The system’s start position is p. The disk bounded by
the dashed circle represents the possible locations at time #(p).

ball of interpretations lies to the right of the two lines passing through the origin with
slopes /1 — €2/¢,. [These slopes are determined by the lines bounding the velocity
error cone. In particular, sin™!(¢,) is just the half-angle of the velocity error cone.]
If the sensed position were close enough so that the error ball overlapped the region
to the left of these lines, then it would not be possible to reduce the distance to the
origin for all possible interpretations of the sensor. In order to see that these lines
correctly characterize the condition under which the distance to the origin may be
reduced, imagine that the state of the system lies on one of these lines. By symmetry,
the commanded velocity will be chosen to be of the form v = (-v,0), with v > 0. If
the velocity uncertainty is given by ¢, then it is possible for the system to move in a
direction that is perpendicular to the relevant line. Instantaneously this motion does
not change the system’s distance from the origin, and thus represents the boundary
condition between guaranteed approach towards the origin and possible motion away
from the origin.

Maximum Approach Time

Given that a sensed value lies far enough away from the origin that it is possible to
reduce the distance to the origin for all possible interpretations, the question arises
as to what the commanded approach velocity should be and how long it should be
executed. Let us just assume that the commanded velocity has unit magnitude, so
that we can focus on the maximum amount of time that the system may execute
that velocity without moving further away from the origin. Equivalently, if one fixes
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the duration of a motion, then one can adjust the maximum velocity accordingl:
Consider now figure 5.2. The figure indicates the effect of an uncertain motion on
a particular starting position p. The commanded velocity is v = (—1,0). At each
instant in time t > 0, the set of possible positions is given by the time-indexed forward
prcjection Fy ¢({p]), whick is an open ball of radius t¢,, centered at p+tv. So long
as this ball lies within the system’s starting distance |p] of the origin, then the motion
has reduced the system’s distance from the origin. For the sensor interpretation p,
the maximum time #(p) that the system may execute the motion is thus given by
the condition that the forward projection at time #(p) just be tangent to the circle of
radius |p| centered at the origin. Minimizing over all possible sensor interpretations
of the sensed value p* = (k,0), the maximum time that the system may execute the
motion v = (—1,0) is thus given by

tmax(k) = min i(p).
max(k) pemin (p)
Now let us determine the maximum time #(p) fo: a given point p. This time
satisfies the equation

(5.13) lp+tv|+te, = |pl

Clearly t = 0 is a solution to this equation, corresponding to the initial degenerate
tangency of the forward projection with the circle of radius |p]. The other solution
in ¢ of this equation will correspond to the maximum allowable time that the velocity
v may be commanded, assuming that in the interval in between these two times the
inequality |p + t v|+te, < |p| holds. Solving for ¢ by twice squaring equation (5.13),
we arrive at four possible solutions. Two of these are zero. The remaining two are
given by
SR T R

If v=(-1,0), as we have been assuming, and if p = (z,y), then this becomes

2
t= - [:tc‘,\/:cz+y2+:c].

Observe that this really only makes sense if ¢, < 1. It is reasonable to thus restrict
€y, since otherwise commanding a velocity v could in principle cause a motion in any
arbitrary direction. Denote the solution corresponding to €, /z% + y? + z by t*, and
the solution corresponding to —¢, /z¢ + y? + z by t~. Of these two solutions, one is
the solution we are seeking, while the other was merely introduced by our squaring
operation. Clearly we want a solution for which ¢ > 0, so if we can show that t— > 0,
then it is the desired solution since t~ < t*. In order to see that ¢t~ > 0, define the
function

f(t) = Ipl=Ip+tvl-te
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= \'/:(:2+y2—-\/(:-—t)2+y2—t6,,.

Now, f(0) = 0, and f(t~) = 0 by definition of t~. Given that the start position p lies
to the right of the lines of slope /1 — €?/¢,, the possible locations of the system at
time ¢ must lie wholly inside the circle of radius |p|, at least for small values of time
t. Thus the inequality f(t) > 0 holds for small values of ¢, as desired. This implies
that f/(0) > 0. Ccmputing the derivative of f, we see that

z—t

filit)y = ——————(x_t)2+y2—eu

T —1t—€,\f(z —1) 4 y?
Ve-0r+y
In particular sign(f'()) = sign{r — e, VZT + y?). So. we see that z —¢, /Z? + y2 > 0,

which says that t= > 0, as we wished to show. [We cculd also have argued directly
that £ — €, /27 + y? > 0 since p lies to the right of the lines of slope :i:\/l —€2/e,.]
Finally, consider f'(¢). Since f(t~) = 0, we have that

OS\/(x—t')2+y2=\/;2+y2—t’q.
This says that

sign (f’(t‘)) = sign (x —t" —¢, (\/:t:2 +y? -t éu))
= sign (J:—e,,\/;:—"’-i-—y;—t_(l—eg))
= sign (c,, vzt +y? - 2:)

= =1

In other words, f'(t~) < 0. This says that the solution ¢t~ does indeed describe the
maximum duration of the motion.

In short, given that the starting position is p, the nominal velocity v = (-1,0)
may be commanded throughout the time interval [0,¢~]. During that time interval,
the system’s distance from the origin is guaranteed to be no greater than its starting
distance |p|. Furthermore, for any shorter duration than ¢~, the system is guaranteed
to approach closer to the origin, independent of the actual err. r distribution of
velocities within the error ball about the nominal commanded velocity.

We have computed the maximum time that a motion may be executed for a
particular interpretation of the sensor position. Using this we can find the maximum
time that is safe for all possible interpretations. Given a sensed position p* = (k,0},
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with k positive and far enough from the origin, the maximum amount of time that
the velocity v = (—1,0) may be commanded is given by

tmax(k) = pemin_ t(p)

. el )

pe&.(p)l—e?( Pryi-z
-2

(5.14) - ( J 1+ _z)

1-¢€2 DEB (p)

Here we are writing p as p = (z,y).

Let us therefore focus on maximizing the function q(z,y) = €, Vz2 + 2 — z,
subject to the constraint that (z,y) € B,,(p*). A more sophisticated strategy would
only consider those sensory interpretations that lie outside of the goal. This would
amount to maximizing q(z,y) subject to the constraint that (z,y) € B (p*) - G
where G = B,(0) is the goal disk. It is a straightforward matter to modify the
sirategy accardingly, but we will not do so here.

'f ¢, = 0, that is. i there is no command error, then ¢(z,y) = —z. Thus ¢q(z.y) is
maximized when r is as close to the origin as possible. If the strategy does not take
the goal into account in deciding which points need to be moved closer to the origin,
but considers the full sensing error ball, then ¢q(z,y) is maximized at z = k--¢,. This
is the smallest z-coordinate of a point in the sensing error ball B,,(p~)

Now consider the case 0 < ¢, < 1. Let us construct the level curves in the plaue,
given by ¢(z,y) = c, with ¢ some constant. Since k¥ > 0 and far enough from the
origin, we can assume without loss of generality that £ > 0. Furthermore. by the
same argument that showed that t~ > 0 above, we can assume that ¢ < 0. Thus we
have that

T+c = €T+ 92,

2 42tc+ = €(z*+ 4.

So

(1-€)z? +2zc+c* — e, y* =0,

from which we see that the level curves are hyperbolas, given by
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with ¢ < 0. See figure 5.3. We are interested in the right-hand branch. In particular,
we are interested in finding the hyperbola with the maximum c value that touches a
point in the sensing error ball about the sensed value p°. It is clear that the maximum
¢ value is achieved at the boundary of the sensing error ball. Thus we are looking for
a hyperbola that is tangent to the circle of radius ¢, that is centered at p*. There are
two possibilities.

First, it is possible that the curvature of a hyperbola at its vertex exceeds the
curvature of the circle that bounds the sensing error ball. In that case there are two
potential tangency points in the first quadrant, that is, there are two iocations along
the upper right branch of the hyperbola at which a horizontal translation would bring
the hyperbola into tangential contact with the circle. One of the potential tangencies
occurs at the vertex of the hyperbola on the z-axis. The other tangency occurs
somewhere further along the hyperbola. Our aim is to find one such hyperbola that
is actually tangent to the circle. and whose associated c value is 2 maximum. Second.
it is possible that the curvature of the hyperboias is iess than tnhat of the sensing error
circle. In that case. the only point of potential tangency occurs on the z-axis, and
thus the maximizing hyperbola is given by that hypcrbola which passes through the
point (k — ¢,,0).

Let us first solve for the tangency condition, then worry about the curvature
issue later. Let us assume that the sensing error ball lies strictly inside the wedge
determined by the two rays emanating from the origin into the right-half plane with
slopes /1 — €?/¢,. This condition is given by k > ¢,/,/1 — €2. If this condition is
not satisfied, then commanding velocity v = (—1,0) for a non-zero duration of time
could potentially increase the distance from the origin for some point in the sensing
error ball.

We can write the equations for .he circle and the hyperbola as:

.’L'—-h2 y2
(I—k)2+y2=€3 and (——;2—1- - 32-=1,
with k£ > 0 as above, and k = _Cz,az —Cc‘;,andbz————-—c . If we eliminate
i—e 1—¢ 1 — ¢2

y from these equations we get
2 :_ ¥ 2 _ 32
€; — (r— k) =;—5($—-h) - b
In other words,

(a® + 8%) 22 — 2(a®k + b*h) z + [a®k® + b*h? — a’€? — a*b?] = 0.
So

a*k + b2h £ \[(a2k + b2h)2 — (a? + B2)(a2k? + b2A? — a2e? — a2}?)
a? + b '

I =
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Figure 5.3: The right branch of a hyperbola. The hyperbola is parameterized by c,
and represents an iso-value line of the function ¢(z,y) = €, VT? + y? — = described
by equation (5.14).
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Since we are looking for a tangency point, the discriminant in this solution must
actually be zero. This additional constraint allows us to solve for ¢ and thus for the
appropriate hyperbola that is tangent to the circle. Thue

0 = a'k?+b'h% + 2a%0°hk — a*k? — a’b*h? 4+ o'’ + al®?
— a?b*k? - b*h? + a%b%€? + a*b?
= 2a°B*hk — a?B?h? + a*e? + a*b? — a?b%k? + a?b%e? + a’b
(5.15) = —a?b*(h — k)? + a*(a® + b?)(e + b7).

Since a > 0. one can divide equation (5.15) by a? to obtain

(5.16) 0 = —b*(h — k) + (a® + b*)(2 + b7).
If we instantiate the values of a, b, and h., we see that
2

2 2
LY . —
T Tay

and thus equation (5.16) becomes

c? c : c? ) c?
0= — k+ + € —
1—e3< 1—ez) <z-e3)2(’+1—e3>

Since ¢ # 0 and 0 < ¢, < 1. the last constraint may be rewritten as

2
0=-—(1c+ )(1—63)2+63(1—63)+62,

I — ¢

v

2 L2y _ 2
(5.17) c:ilg—ﬁ.

This value of ¢ determines the correct hyperbola that is tangent to the boundary
of the sensing error ball, assuming that there is a non-trivial tangency. The existence
of a non-trivial tangency is determined by the curvature of the hyperbola and the
circle. Trivial tangency means that the hyperbola is tangent to the circle at the point
(k — ¢,,.0). This implies that

(5.18) c= —(1-¢€)(k—e)

Although we will not require it in the sequel, let us determine the condition under
which only trivial tangency is possible. See figure 5.4. The circle has curvature 1/¢,.
Let us compute the curvature of the hyperbola

~N

2
oy

5.19 — - =
(5.19) il
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q

Trivial tangency Non-trivial tangency

Figure 5.4: The first hyperbola has smaller curvature than the circle, and thus is
tar gent only in a trivial sense. The second hyperbola has greater curvature, and thus
is tangent to the circle in a non-trivial sense.

In general for a curve y = y(z) the curvature k a a point (z,y) is given by
_ W)
(1+y'(2)?)"?
For the simple hyperbola {5.19) this expression becomes
bat

K= (@ 1 B2t —al T 2a.

In particuiar at the vertex (a.0), the curvature is given by

a
K(g,0) = ﬁv
~hich becomes
€y
K= ——,
c

if we instantiate the values of @ and & for the class of hyperbolas that we have been
ronsidering. In order for a non-trivial tangency to exist the curvature of the touching
hyperbola must exceed the curvature of the circle, that is, k > 1/¢,. If we substitute
the maximizing value of c for the touching hyperbola, as given by equation (5.17), we
see that this constraint becomes:
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c
€y > ——,
€y

K (1-¢)—e
2¢,k ’
€& > k(1-¢,)

€s

For the sake of our analysis of the sensing-guessing strategy, let us not worry
about whether the maximizing ¢ is determined by equation (5.17) or by equation
(5.18). Instead, we will conservatively pick the larger of these. As it turns out,
this is always given by (5.17), even when (5.17) does not physically correspond to a
hyperbola that has a non-trivial tangency with the sensing circle. In order to see this,
consider the inequality that we would like to prove:

€2 — k31 - €?)

o > (1= e)(k—e).

(5.20)

That is:
€~k + k% > —2k 4 2ke, + 2k%¢, — 2keqe,,

(1 —€,) —26,(1 —e)k+€ > 0.

s

Now consider the function g(r) = 7%(1 — €,)® — 2¢,(1 — €,)z + ¢2. Observe that

€s
= 0,
g(l—e,,)
€
7 s — 0
g T—e )
gd'(z) > o.

Thus we see that ¢ is a non-negative function, which establishes the inequality
(5.20). We see then that ¢(z,y) = c is maximized for some c that is bounded from
above by the value of ¢ given by (5.17). Thus, in deciding on the maximum amount
of time that the velocity v = (—1,0) may be executed, it is safe to take c to be given
by (5.17). This follows from the definition (5.14). We thus have:

(5.21) = k- - —




246 CHAPTER 5. DIFFUSIONS AND SIMPLE FEEDBACK LOOPS

5.4 Analysis of the Sensing-Guessing Strategy in
a Simple Case

We are now in a position to analyze the sensing-guessing strategy outlined earlier (see
page 235). We will focus on a particularly nice version of the strategy, in which the
sensing and command errors are unbiased and normally distributed. Despite such
nice distributions the analysis will quickly become complicated. For this reason most
of the results in this section are numerical.

Let us assume that the strategy executes a simple feedback loop that repeatedly
senses the current position, then, depending on the distance of the sensed value
from the origin, either executes a Brownian motion for a short period of time or
reduces the distance to the goal for all possible sensor interpretations. Let us fix the
maximum possible time interval between sensing operations as dt. This time interval
is used to compute a maximum commanded velocity of approach, analogous to the
maximum time computation (5.21). Although the strategy assumes a maximum
duration between sensing operations of time dt, we will permit the actual duration
to be At, with At < dt. In a sense, the quantity 1/dt serves as a cap on the
maximum velocity magnitude that may be executed. This prevents the strategy from
becoming a jump L -cess as the time interval At shrinks to zero. Instead, the process
becomes a diffusion process, and we can use the analysis of this diffusion process to
approximately characterize the behavior of the sensing-guessing strategy. 2

Throughout we assume that sensing is instantaneous, by which we mean that the
time constants associated with sensing are much smaller than those of the rest of
the system (see section 5.2). While instantaneous sensing could be used to achieve
perfect information for the unbiased sensor distribution that we are assuming, the
strategy is not actually aware of this distribution. Recall that the strategy should
succeed independent of the actual distribution.

The sensing and command errors are assumed to be two-dimensional normal
variates with zero bias. We will use a certainty threshold of 98.9% in approximating
these errors by uncertainty balls. See again section 5.2. Thus the standard deviation
of the sensing error is given by o, = %e,. Similarly, the standard deviation of the
velocity error is given by o, = 1 ¢, |v|], where v is the commanded velocity.

Consider now a sensed value p* at a distance ¥ > 0 from the origin. If
k < €/y/1 —¢€2, then it is not possible to move all interpretations of the sensed
value closer to the origin. In this case, the system executes a Brownian motion for
time At < dt, then takes a new sensor reading. Let us assume that the infinitesimal
variance of the Brownian motion is given coordinate-wise by o%.

If k > €,/y/1 — €2, then the system executes a motion directed towards the origin

for time At < dt, followed by a new sensor reading. The commanded velocity v is
parallel to the vector —p*. We can determine the maximum allowable magnitude of

120ne might very well be interested in a jump process. Indeed. one of the random strategies
suggested for the example of section 2.4 was a jump process. However, we will not consider these
here.
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- e

ambiguous
sensor values

€,

(1- )

1/2

Figure 5.5: The system is at location ‘a,0). The possible sensor values form a disk
of radius €, about this point. If a sens v value is at least distance d away from the
origin, then the system can execute a motion guaranteed to reduce its distance from
the origin. The sensor values are shown in a polar coordinate representation (r,8)
relative to the actual position of the system. For each r there is a maximum angle
6, for which the sensor value lies far enough from the origin. This means that the
sensor value p*(r,6) lies at least distance d from the origin whenever |8] < 9,.

this velocity by an argument similar to the one used to establish (5.21). Thus

(5.22) 1v|=31; <k—%1i’€2).

5.4.1 Expected Progress

Since the problem is radially symmetric, we can assume that the actual position lies
on the z-axis at the point (a,0), with a > 0. The sensed value p* lies (with probability
0.989) in a circle of radius ¢,, centered at (a,0).
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Expected Change in Position

Let us compute the expected change in position assuming that the sensed value lies
far enough away from the origin that the strategy can execute a motion guaranteed
to reduce the distance to the origin. Figure 5.5 indicates the portion of the sensing
error ball for which the sensed values lie far enough from the origin. By symmetry
of the sensing error ball about the z-axis and by symmetry of the velocity error ball,
it is clear that the expected change in the y-coordinate of the position (a,0) is zero.
For this reason we will focus simply on the expected change in the z-coordinate.
Furthermore, since the velocity error is assumed to be unbiased as well as symmetric,
in taking expectations we can simply average over the z-coordinate of all commanded
velocities. The averaging here is done with respect to the distribution of the possible
commanded velocities, that is, with respect to the distribution of observable sensor
values.

In order to compute the expected change in position, let us notice that for each
observed sensor value, the system either executes a random motion or a deterministic
motion, depending on the distance of the sensed value from the origin. If the observed
sensor value lies far enough from the origin, then the expected change in position is
simply the commanded velocity times the duration of the motion At. We can integrate
these commanded velocities over all possible sensor values that lie far enough from the
origin, weighting the integrand by the density function that describes the sensor error.
The resulting quantity is the expected velocity of the system due to non-randomizing
motions. Let us define Z(a) to be the z-component of this integral. Said differently,
T{a) is the expected instantaneous change in the z position given that the starting
position is at (a,0) and that the distance of the sensed value from the origin is greater
than ¢,/,/1 — €2, times the probability of actually obtaining a sensor value that far
from the origin.

We can write each possible sensor value p* in polar form relative to the actual
position (a,0). Specifically, p*(r,0) = (z/+,8),y(r,8)), where z(r,0) = a + rcosf
and y(r,0) = rsinf. We will denote by r,8) the velocity command issued when
the sensed value is p*(r,8). Observe also that a sensor value p*(r,8) is located at a
distance k = k(r,8) from the origin, where

(5.23) k(r,0) = Va? + r? + 2ar cos .

Given the range of possible sensor values B, (a,0) when the system is at the
point (a,0), and given a disk By4(0,0) of radius d centered at the origin, consider the
set of sensor values in the set difference B,,(a,0) — B4(0,0). These are the set of
possible sensor values that are at least distance d away from the origin. If we take d
to be ¢,/\/1 — €2, then this set consists of those sensor values for which the strategy
can safely moves towards the origin, that is, for which the strategy can execute a
motion guaranteed to reduce the system’s distance from the origin, independent of
the system’s actual location within the sensing error ball B,,(a,0).

Now consider the ring of sensor values at a fixed distance r from the point (a,0).
For some, possibly null, range of angles (—,,6,), the sensor values p*(r,8) lie at least
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distance d from the origin. See figure 5.5. First let us determine the range of radii
r for which this range is non-empty, then let us find an explicit expression for 4,.
Clearly, if the sensing ball about (a,0) lies inside the disk of radius d, then no sensor
value lies at least distance d from the origin. Similarly, if the actual location (a,0)
lies at least distance d from the origin, then there will be sensor values at all possible
radii r that lie at least distance d from the origin. Thus the set [Tmin, 'max) of radii
for which the interval (—#0,,6,) is non-empty is given by:

9, ifa+e, <d;
(5.24) [Fmins Tmax] = § [0 €5), if a > d;
[d —a,¢,), otherwise.

For a given r € [rmin, Tmax), the angular endpoint 6, is given by:

COS—I(L;:;:'—Z), otherwise (assuming a + r > d).

0_{7& fa-r<-—-dora-r2d;

The cos~! function is taken to have values in the range [0, 7].

The reason for representing the sensor values in terms of polar coordinates relative
to the actual location of the system is that the probability density function for the
possible sensor values has a simple form in polar coordinates. Specifically, the density
function in polar coordinates corresponding to an unbiased two-dimensional normal

variate with variance o? is given by:

_ r 7'2
(025) p(r,0) = 27102 €xp {_Eﬁ}, 0<r < .

As one would expect, the density function is uniform in 8, that is, it is constant
for constant r. Although the function is defined for all non-negative r, we will only
consider 7 € [0,¢,], where ¢, = 30. Over this reduced range p(r,6) is no longer a
density function. However, if the sensor values are indeed constrained to this finite
error ball, then one can regain a density function simply by dividing by approximately
0.989 throughout.

The expected instantaneous displacement in the z-direction is thus given by:

Tmax 8,
.26) Z(a) = (1,0 ,8)dbdr,
(5.26) Z(a) /;mn /or ve(r,0) p(r,6)dbdr

where v(r,8) = (v;,v,) is the commanded velocity detesmined by p*(r,0).

Let us expand this formula slightly for the case d¢ = 1. One can simply divide
by dt in the general case. Observe that the r-component v.(r,8) of the commanded
velocity is of the form:

P e z(r,0)
kl-e) p(r,0)

Let us focus on the inner integral; call it Z,. Then we see that

- e e g Te——
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- o 1 63 2(1',0)
= /_a,‘(" '?l—es) P 0 %

e z(r,0)
) (o)

oy 1 é a+rcosb
- 2/0 —<k—7c.1—62) k a0

br 1 €
= 2/0 - 1_—-——1_63) (a 4 rcosb)db

2

= 2/& 1 ! & (a+rcosf)db
B 0 (a®+ r? + 2arcosf) (1 — €2)

e -  a+rcosf br
= o5 / d0—2/ 8) do
1—-¢€2 Jo a?+r?+2arcosé 0 (a+rcost)
é (8, sign{a® —1?%) o fla—r] 9. :
= 21——73 [-2-5 = tan s ta.nE —2[ab, +rsiné,].

Observe that when a is large, that is, when the system is located far from the
origin, the significant term in the expression for 7, is —2a#d,. Similarly, when a is
small, although the terms proportional to 1/a now become significant, they tend to
be of equal magnitude but opposite sign. Furthermore, for the permissible range of r
given by equation (5.24), since T, is negative by construction, these two terms tend
to be canceled by the term —2rsiné,. Thus again the term proportional to a seems
to be the significant term. In short, we see that the sensor essentially acts almost
like a spring, pulling the system towards the origin in near proportion to its distance
from the origin. This is not completelv correct, but it will suffice as a qualitative
description.

Finally, the expected drift in the z-direction is determined by integrating over the
allowable radii r, that is:

Tmaz 2

T(a) = - / T, re” 37 dr.

This integral does not admit to a nice explicit description. Instead, we will consider
some numerical examples later on. The important observation is that the sensor
essentially acts like a spring. As we mentioned in section 5.1.4, pure Brownian motion
tends to push a system away from the origin. The question then is whether the
pull of the sensor towards the goal is strong enough to overcome the natural push
outward due to random motions. Recall that the random motions are required since
the system does not know what the error distributions are, but nonetheless should
guarantee eventual convergence.
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Qualitatively speaking, the inward pull due to sensing is proportional to the
distance from the origin, while the outward push due to randomization is inversely
proportional to the distance from the origin. Thus there will be a range for which the
sensor dominates, and the system moves towards the origin on average. However, as
the system approaches close to the origin, eventually the randomization will dominate,
and the system will move away from the origin on average. At the boundary between
these two modes of behavior, the system moves neither inward nor outward, on
average. If the goal is large enough, the system will be sucked into the goal in
an almost deterministic fashion. This was the gist of our discussion on local drift.
However, if the goal is too small, then the convergence time will become quadratic or
worse, as the strategy must rely primarily on random motions rather than on useful
sensor readings to attain the goal.

Let us define p(a) to be the probability of obtaining a useful sensor reading
whenever the system is at location (a,0). A useful sensor reading is one for which
the system can execute a motion guaranteed to reduce its distance from the origin.
Clearly

max 6y
pa) = [ [ plr,6)dsdr

1 Tmax 2
R 6, re 27 dr.
0% Jrmin

Suppose that the system is at location (a,0) and obtains a useful sensor reading
p”. Assume that the system executes a motion determined by equation (5.22) for time
At. Given this information, the discussion above says that the expected position after
execution of the motion, weighted by the probability of actually obtaining a useful
sensor reading, is given by:

T(a)
(a -+ —E-t— At, 0)

In other words,

2}

t
E[AX |useful sensor reading] p(a) = (‘;)tA ,

e

E[AY |useful sensor reading]p(a) =

Variance of Positional Change

Let us also compute the variance of the change in each coordinate, assuming that
the sensor provides a useful reading. These quantities will enable us to compute the
infinitesimal drift and variance in our diffusion approximation to the sensing-guessing
strategy.
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First, let us suppose that the commanded velocity is v, and let us compute the
expectations E[(AX)?|v] and E[(AY)?|v]. Assume that the velocity is executed for
time At and that the velocity error is a two-dimensional normal variate with standard
deviation g, |v|. We are assuming as before that o, = } ¢,, and that the position error
after execution of a motion for time At is simply the velocity error scaled by At. See
the discussion of section 5.2.

Recall that in general, if Z is a random variable, then E{Z?] = VAR[Z] + E|[Z)?,
where VAR[Z] is the variance of Z. This is basically just the definition of the variance
of a random variable. In the following expressions, the commanded velocity is of the
form v = (v,,v,). We thus have that

E[(AX)?|v]

I

VAR[AX|v] + E[AX|v]?
(At)? ol P + (Atw, )
(At)? (Jv]* o2 + 7).

Similarly,

E[(AY)*lv] = (A1)’ (Iv[* o7 + o).

Recall the expression (5.21) for tmax(k). Thinking of k as a function of r and 4
as given by equation {5.23), cne can write tlie magnitude of the commanded velocity
corresponding to the sensed value p*(r,8) as |v(r,0)] = tmnax(r,0)/dt. Now let us
average over all possible sensor values and associated commands. Then

Tmax 6,
E[(AX)*|useful sensor reading] p(a) = / / " E[(AX)?IV(r,0)) p(r. 8)d0dr

Tax m(T,O)P [m(r, 0)]2
(dt)2 /m.,, ./_ ‘p.|2 p(r,6)d0dr.

dt)2 / ,,,m/ (tmax(r,0))? p(r, 8)dOdr

We can, for appropriate definitions of I(a) and I.(a), write this as

(5.27)  E[(AX)?|luseful sensor reading] p(a) = ((3—:)): ol l(a) + % I.(a).

Similarly,

(At)? 2 [(a) + (At)?

2 . I —_ ’
(5.28) E[(AY)*|useful sensor reading] p(a) = @) o, @ I,(a).

Here I.(a) + I ,(a) = I(a).
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The important cbservation is that these expectations are proportional to (At)2.
This means that if we pass to a diffusion approximation, the infinitesimal variances
will be zero. This is because one divides by At in computing the infinitesimal
parameters, then allows At to approach zero. The fact that the infinitesimal variances
approach zero means that the portion of the sensing-guessing strategy that results
from useful sensor values is essentially a deterministic process. This is due to our
assumption that the velocity error scales with At, rather than with VAt (see the
discussion in section 5.2). If instead we assumed that the velocity error was due to
white noise, then it would scale with v/At. In that case the expressions (5.27) and
(5.28) above would be slightly different. Specifically, the coefficient of I(a) would now
be proportional to At rather than (At)?. In passing to a diffusion approximation,
this says that the infinitesimal variance contains a term proportional to /(a). It is
straightforward to perform thc inner integral with respect to 6 in the definition of
I{(a). Again, the outer integral with respect to r has no explicit representation. We
will not perform the integration here, but simply mention that the integral contains
a term proportional to a?, as one would expect.

Infinitesimal Parameters of an Approximating Diffusion Process

Having determined the expectation and variance of the change in position given that
the system obtains a useful sensor reading, iet us now compute these quantities in
the general case, that is, for arbitrary sensor readings, assuming that the system is
at location (a,0) and hLas just Laken a sensor reading. Recall that the variance of
the Brownian motion is 6%. Recall further that p(a) is the probability of obtaining a
useful sensor reading when the system is at the location (a,0).

(5.29) E[AX] = E[AX|useful sensor reading] p(a)
+ E[AX|Brownian motion] (1 — p(a)).
(5.30) So E[AX] = %‘:—)At'
(5.31) E[AY] = 0.
Similarly,
BUAXY) = (G [210)+ @) + (1 - ) [ At} + ox(ar)]
BUAYY] = 2k [210) + 1) + (1 - ) [Ato} +ay(an)],

where o,(At) and o,(At) contain terms of order less than At. It follows that the
infinitesimal drift and variance of an approximating diffusion process derived from
the sensing-guessing strategy are given by:
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#(a,0) = (5‘(1—‘:) 0),
20 =[G iyl

where

o&(a) = (1 - p(a)) o

We should also verifv that the higher-order infinitesimal moments vanish, but this
follows in a straightforward manner from the results for Brownian motions.

A Radial Process

The behavior of the sensing-guessing strategy is radially symmetric, since we have
assumed that the sensing and control errors are symmetric. We can thus think
of the strategy as a one-dimensional process on the positive real line. We will
approximate the actual <ensing-guessing strategy by a diffusion process. Specifically,
define D(t) = /X?(t) + Y?(t), where (X(t),Y(¢)) is the position of the system at
time t. Then D(t) is the distance from the origin at time t. In determining the
infinitesimal parameters of D(t) we will use an argument very similar to the one used
to establish the infinitesimal parameters of the Bessel process (see section 5.1.4 and
(KT2]).

Define, first of all, Z(t) = X(¢)?+Y(t)?. So D(t) = /Z(i). As usual, we shall write
X(t+ At) =z + AX. where r = X(t) is given at time ¢, and At is the time between
sensing operations. Thus AX is a random variable. A similar notation is used for Y
and Z. AX and AY are independent random variables. Modulo terms of order less
than At, both of these random variables have essentially normal distributions, with
variance Ato%. Given that (z,y) = (a,0), E{AX] and E[AY] are given by (5.30) and
(5.31) above. Observe that

AZ = X*t+ At)+Y(t+ At) —z? —
= 2 4+2r AX +(AX) + ¥+ 20 AY + (AY)  — 22 — 4?2
= [(AX)*+(AY)Y| +2 [z AX +yAY].

By symmetry, we can assume without loss of generality that (z,y) = (a,0). Thus

E[AZ)

E[(AX)Y] + E[(AY)?] + 22 E[AX] + 2y E[AY]

= Atok +5,(At) + Atod 4 3,(AL) '_‘afg‘:) Al
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where 6,(At) and 0,(At) contain terms of order less than At.
This tells us that the infinitesimal drift for the process Z is

Z(a)
dt

Let us now compute the terms for the infinitesimal variance of AZ. The
computation makes use of the fact that the higher order infinitesimal moments for
the processes X and Y vanish, and the fact that AX and AY are independent.

pz(a®) =2a +20g

E[(AZ)Y) = E[(2zAX +(AX)*+2yAY +(AY)?)?]
= E[z*(AX) + (AX)' +4y3(AY)? + (AY)* + 4z(AX)® + 4y(AY)?
+8zyAXAY +4zAX(AY) + 4yAY (AX)? + 2(AX)}(AY)?
= 4E[zHAX)? + 2 (AY)?] + o(AY)
= 40k At + o(At),

where o( At) contains terms of order less than At, that is, terms proportional to (At)?,
with p > 1. We see then that the infinitesimal variance of Z is given by

0%(a®) = 40k a’.
Furthermore, one can argue that the higher-order infinitesimal moments vanish, since
they vanish for the underlying Brownian motion processes.

In order to determine the infinitesimal pararneters of the process D, we will use
equations (5.10) and (5.11) from page 229, with ¢(z) = /z. Thus

oot = 3ot (1) o 52)
_ %Méag (_%213)+2a5(a)(;/:t)+2aé
(5.33) - I‘(i‘t') (l—l;tl))afa

This expression says that the infinitesimal drift consists of two terms, one pulling the
system towards the origin, the other pushing it away. The inward pull is due to the
sensor, while the outward drift is due to randomization. This outward pull arises in
the same manner as it did for the Bessel process.

Next. observe that




256 CHAPTER 5. DIFFUSIONS AND SIMPLE FEEDBACK LOOUPS

11\2
oh(a) = o3 (53)

= (4 o‘é a2) ‘-1%

= o2
= (1 - p(a))od.

In other words, the infinitesimal variance is the same for the radial process as it
is coordinate-wise for the two-dimensional representation of the sensing-guessing
strategy.

Finally, let us observe that if the error arising from motions commanded in
response to useful sensor values is non-vanishing in the limit as At goes to zero, then
one must add another term to the expression for s%. This term is proportional to
the integral I(a). The term carries over to the expressions for up and o%, effectively
adding another outward pull to the radial drift. This outward pull is essentially
proportional to the distance from the origin. Intuitively it arises from command errors
in much the same way that an outward drift arises from purely random motions.

The important observation to take from (5.33) is that the two terms have opposite
sign. Thus, there is some point ao for which up(ag) = 0. If @ > ag, then the net
radial drift is negative, meaning that on average the system is moving towards the
origin. Conversely, if a < aq, then the drift is positive, meaning that ~n average
the system is moving away from the origin. This says that if the goal radius r is
bigger than ao, then the system behaves almost like a deterministic process, moving
towards the goal with expected approach velocity greater than or equal to up(r).
Thus the expected convergence time is essentially bounded by —a,/up(r), where a,
is the starting location of the system. On the other hand, if r < ao, then the system
will act very similar to a Brownian motion process, randomly walking about inside
the annulus r < a < ag until the goal is attained. The convergence times now become
slightly worse than quadratic in the distance from the origin.

5.4.2 An Example

Solving for ag is in general a difficuit task, since the expression (5.33) involves several
integrals that have no explicit analytic description. We will therefore consider a simple
numerical example. Suppose that the error parameters are given as follows.

Sensing Error: € = T
Velocity Error: & = 0.5
Brownian Motion Variance: o0} = 1.0
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Figure 5.6: Effective radial drift for the sensing-guessing strategy.
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Figure 5.7: Component drifts for the sensing-guessing strategy, along with the
probability of obtaining a useful sensor reading.
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Figures 5.6 and 5.7 indicate the resulting radial drift. Figure 5.7 resolves this drift
into the inward pull due to the sensor and the outward push due to randomization.
The figure also shows how the probability of obtaining a useful sensor reading increases
with the distance from the goal. The figures indicate that the value ag at which the
drift switches from negative to positive is around @ = 3.0. It is interesting to note
that th~ value of aq is considerably less than ¢, for this example. In order for a sensed
value to be useful it has to lie outside the circle of radius d = ¢,/1/1 — €. In this
example d = 8.1. In order to guarantee that a sensed value will lie far enough from
the origin, one would have to insist that the system be at least distance d+ ¢, =~ 15.1
from the origin. Thus a strategy that wished to guarantee entry into the goal in a
fixed number of motions could do so only if the radius of the goal was at least 15.1.
However. a randomized strategy can guarantee eventual entry. Indeed, for the nice
Gaussian sensor distribution that we have assumed, sufficiently many sensor values lie
outside the circle of radius d. that the expected approach velocity points towards the
origin whenever the system is at least distance a = 3 from the origin. The difference
between d + ¢, = 15.1 and a = 3 shows quite dramatically how a randomized strategy
can extend the convergence region of a goal beyond that provided by a bounded-step
guaranteed strategy.

We should add our usual caveat to these observations. The strategy could be
considerably improved for the particular pair of sensing and control errors assumed
in the analysis above. For instance, by always assuming that the sensor value p* is
correct. and issuing a commanded velocity of the form v = —p*/dt, the expected
approach velocity could be made to point towards the goal for all positions of a.
not just for a > 3. This is because the sensing error has no bias. However, as we
have stated before. the strategy was designed to succeed for all error distributions
consistent with the bounds ¢, and ¢,, not just unbiased Gaussian errors. A strategy
that always interpreted the current sensed value as correct could easily converge to
the wrong location. This difficulty was demonstrated in figure 2.7 for a sensor with
a fixed but unknown bias. Thus we have employed a strategy that is suboptimal in
the presence of unbiased Gaussian errors, but that still converges reasonably quickly,
and more importantly, that converges for all possible error distributions.

Csuvergence Times

Let us examine the expected convergence times for the current example. In section
5.1.2 we discussed a differential equation that models the expected convergence time
of a diffusion process. We can solve this equation numerically to obtain estimates for
the convergence times of the sensing-guessing strategy for various goal radii.

Figure 5.8 displays the numerical solution to the differential equation (5.6),
assuming that the goal is located at a = 5, and that the system reflects at a = 12.
The expected times to reach the goal seem to satisfy a downward-opening quadratic.
This is not surprising, given the spring-like behavior of the sensor. Af.er all, the
expected approach velocity at a given point is almost proportional to the distance
{ror: the origin. For these examples, the maximum cap on velocity magnitude was
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Expected convergence times to reach
goal at S, starting from ‘a’.

Figure 5.8: Expected times to reach a goal of radius 5 from different starting locations,
for the sensing-guessing strategy.
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Figure 5.9: Expected times to reach a goal of radius 1 from different starting locations.
for the sensing-guessing strategy.

indirectly given by using dt = 0.1. So, at a distance of a units from the origin, the
expected approach velocity is no greater than a/dt units per second, that is, 10a. In
fact. it is often much less because not all sensor values provide a useful sensor reading.
For instance at a = 8, the expected approach velocity is approximately —17.3 (see
figure 5.6), whereas at a = 12 it is about —66.1.

The quadratic nature of the convergence times may seem to contradict the claim
that the convergence times are linear in the distance from the origin. In fact there
is no such contradiction, since the linearity claim is simply an upper bound on
the convergence times. Since the expected approach velocity does increase with
the distance from the origin, one would expect the actual convergence times to be
considerably less than the predictions made by the linearity bound. Indeed, if one
erected a line tangent to the curve of figure 5.8 at the point a = 5.0, this line would
represent the linear upper bound. The downward-opening nature of the curve reflects
the fact that the actual performance is considerably better.

A visually more convincing argument is made by considering the convergence
times for a goal radius r that lies inside the radius ag. Recall that aq is the location
at which the expected approach velocity switches sign. In some sense aqy represents
an attraction point, since locally the expected infinitesimal velocity points towards
ao. Thus if a goal has a smaller radius than ao, then convergence is guaranteed by
the variance of the Brownian motion, not by the motions suggested by the sensor.
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Figure 5.10: Expected times to reach a goal of radius 2 from different starting
locations, for the sensing-guessing strategy.

The greater the variance of the Brownian motion, the faster the convergence. For the
case, r = 1.0, figure 5.9 shows the expected convergence times, assuming reflection
at a = 8. The curve is again similar to a quadratic, but the convergence times are
one to two orders of magnitude greater than they were for the case r = 5. Notice
that the segment from a = 8 to a = 5 appears nearly linear with respect to the scale
of the entire curve from ¢ = 8 to @ = 1. In other words, relative to the scale of this
problem, where the goal is at r = 1, the convergence times of the previous problem,
where the goal was at r = 5, are indeed nearly linear.

Finally, figure 5.10 displays the convergence times for another problem in which
r < ag. In this case r = 2. Again, the times are considerably greater than for the case
r = 5> ao. Furthermore, comparing this figure to figure 5.9, one sees how dramatic
is the difference between moving from a = 3 to # = 2 and moving from a = 2 to
a=1.

5.4.3 Simulations

We tested the sensing-guessing strategy in simulation. The results agree qualitatively
with those obtained from the analysis above. In particular, for the case in which the
goal radius is 5, and the starting location is at the point (12,0), the average time to
attain the goal, averaged over 1000 trials, was approximately 0.505. The maximum
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and minimum times to attain the goal were 0.039 and 2.64, respectively, and the
experimentally obtained standard deviation was 0.365. The numerical results from
the data for figure 5.8 suggested an expected convergence time of approximately 0.61
in this case.

Similarly, for the case r = 1, with a starting location at (8,0), the average
time to attain the goal was 9.14, with a standard deviation of 7.86. The minimum
and maximum times were 0.116 and 58.2. These statistics were also obtained from
1009 trials. The numerical results from the data for figure 5.10 suggest an expected
convergence time of approximately 14 in this case.

The simulation statistics and the analytical/numerical predictions do not agree,
except in terms of order of magnitude. Part of this is due to the fact that we
assumed a pure diffusion process for the analytical results, whereas the simulations
were implemented as discrete-time processes, with a time step that was on the order
of dt. As a consequence, the variance arising from command errors became significant.
Recall that we assumed that the variance in the command error disappears as the
time step approaches zero. A larger variance implies that the system is more likely
to make big motions, which can decrease convergence times. Nonetheless, as a first
approximation to the qualitative behavior, the numerical results describe the sensing-
guessing strategy reasonably well. Indeed, upon taking At = dt/100, there was a
marked improvement in the results. For the case r = 5, the average over 1000 trials
was 0.582. For the case r = 1, the average over 1000 trials was over 11.

Biases

If we add biases to the sensing or control errors, then the problem is no longer
symmetric. In particular, the infinitesimal drift and variance depend not only on the
distance from the origin but on the exact location p = (z,y). The differential equation
(5.6) describing the expected time to attain the goal is thus a two-dimensional partial
differential equation. Rather than solve this equation explicitly or numerically, let us
try to obtain a qualitative description of the behavior of the system.

We will focus on sensing biases. That is because a sensing bias can radically
change the convergence properties of a region near the goal. In particular, as we
shall see, a point in state space may change from a point at which sensing is good
enough to move the system towards the goal on the average, into a point at which
only randomization is possible. While velocity biases can also change convergence
properties, the feedback strategy of this chapter was cesigned to make progress for
all velocities in the velocity error cone. Thus the change affected by a velocity bias
manifests itself primarily as a small change in the direction (and magnitude) of the
infinitesimal drift. Locally this does not change the convergence properties of points
near the goal, assuming that the velocity bias is small. The velocity bias clearly may
have a global effect since changing the local infinitesimal drift changes the natural
paths of the system. The analysis of such global changes goes beyond the scope of
this thesis.

It may be useful to consider again the example of section 2.4. In that example the
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Figure 5.11: This figure indicates the effect of a sensing bias on the usefulness of
sensor values. A sensor value is useful if it lies outside the circle of radius d. In each
of Part A and Part B the actual state of the system is at the point p. The solid circle
about p indicates the range of possible sensor values without any bias. The dashed
circle about the point p + b indicates the actual range of sensor values, assuming a
bias b. In Part A the bias increases the range of useful sensor values, while in Part
B the bias decreases the range of useful sensor values.

sensing error was given by a constant bias. The effect of this bias was to facilitate
goal attainment from certain approach directions, while preventing it from others. If
one introduces sensing biases into the simple feedback strategy of the current chapter,
the effect is similar. Effectively the bias shifts the sensing uncertainty ball. For some
states of the system this means that the observed sensor values are shifted away from
the origin, thus increasing the likelihood that the syscem will obtain a useful sensor
value. For other states, the observed sensor values are shifted towards the origin,
thereby preventing the system from knowing in which direciion to move.

First, imagine that the system is unaware of a bias in the sensing uncertainty.
Instead, the simple feedback loop operates as before on the assumption that the
sensing error ball has radius ¢, and that the velocity uncertainty is given by e,.
Let d = ¢,/y/1 —€2. Recall that this means that whenever the system observes
a sensor value that lies at least distance d from the origin, then it will execute a
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motion guaranteed to make progress towards the origin. If the sensed value lies within
distance d of the origin, then the system executes a randomizing motion. Now, let p
be the actual state of the system and let b be the unknown bias in the sensor. See
figure 5.11. If there were no bias, the range of possible sensor readings would be given
by a ball of radius ¢, centered at p, that is, by B,,(p). With the bias b, the range of
possible sensor values is shifted by the bias, that is, it is given by the ball B,,(p + b).

In short, the behavior of the feedback loop at the point p, assuming an unknown
bias b, is the same as it would have been at the point p + b for a feedback loop in
which there is no sensing bias. In particular, the local infinitesimal drift at the point
p in the biased case is the same as it would be at the point p + b in the unbiased
case. Suppose that p and b are actually parallel, as in figure 5.11. Then in the
biased system the expected velocity of approach is increased at the point p whenever
p-b > 0, and is decreased otherwise. Thus a system approaching the origin from a
direction on the opposite side of the origin relative to the bias must quickly resort
to randomization. If the bias is reasonably small relative to the size of the goal then
this is not a permanent problem. Eventually, as the system drifts around the goal,
the sensing bias begins to facilitate goal approach, and the system is again able to
rely on sensing to make progress towards the goal. (See again the example of section
2.4 that deals with the case of sensing error due purely to a fixed but unknown bias.)

Thus far we have assumed that the system is unaware of the existence of a bias.
If in fact the maximum possible magnitude b, of the bias b is known to the system,
but not the actual direction, then a safe strategy is to augment the effective sensing
uncertainty radius from €, to €, 4+ by.. This increases the value of the safe distance
d. As a result, the range of useful sensor values at any state is reduced. This means
that the infinitesimal drift towards the origin is decreased in magnitude. Indeed, for
some states, sensing may no longer be of any use.

In summary, we see that a sensing bias changes the convergence properties of
points near the goal. In particular, there are preferred directions of approach, namely
those that are roughly on the same side of the goal as the direction given by the
sensing bias. If the sensing bias is small, then the system can safely ignore the bias.
If the bias is large, then its maximum magnitude should be incorporated into the
decision loop that ensures safe progress towards the goal.

5.5 Summary

This chapter analyzed in detail a simple feedback loop. The task consisted of moving
a point in the plane into a circular region at the origin, in the presence of control and
sensing uncertainty. Such a task might correspond to the problem of inserting a peg
into a hole by sliding the peg on a surface surrounding the hole. The strategy was
stated without assuming any particular form of error distribution. Both the control
and sensing uncertainty were merely represented as bounded error balls.

The strategy consisted of a combination of sensor-based motions and random
motions. Repeatedly, the system would sense its current position, then execute a
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motion for a short duration of time. Whenever the sensed position was sufficiently far
from the origin, the system would execute a motion guaranteed to reduce its distance
from the origin for all possible interpretations of the sensed position. Otherwise, the
system would execute a random motion. The purpose of the random motion was to
move either to a location from which the sensor could again provide useful information
or to attain the goal fortuitously.

The randomized strategy was formulated to succeed independent of the actual
error distributions, so long as these distributions satisfied certain bounds. The
randomizing aspect of the strategy ensures this success. The convergence time of the
strategy, however, depends intimately on the actual error distributions. The strategy
was analyzed for a particularly nice pair of error distributions, namely unbiased
Gaussian errors in both sensing and control. This analysis involved modelling the
behavior of the strategy as a diffusion process. The resulting diffusion approximation
determined a range of goal radii for which the strategy converged quickly. In contrast,
a strategy that must guarantee entry into the goal within a fixed number of steps
would consider the problem unsolvable for many of these goals, namely those goals
with small radii. One may conclude that randomization offers a reasonable approach
for extending the class of solvable tasks beyond those considered solvable by bounded-
step guaranteed strategies.
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Chapter 6

Conclusions and Open Questions

6.1 Synopsis and Issues

Randomization and Task Solvability

The main goal of this thesis has been to demonstrate how randomized strategies can
extend the class of tasks considered to be solvable. The basic idea is to place a
loop around a set of strategies, each of which is guaranteed to accomplish a task if
certain preconditions are satisfied. The purpose of the loop is to repeatedly choose
and execute one such strategy, in the hope of eventually choosing a strategy that will
actually attain the goal. In making its choice, the system executes a strategy whose
preconditions are satisfied, should the system ever be fortunate enough to knowingly
satisfy the precorditions of some strategy. Generally, however, the preconditions may
be too stringent to be satisfied knowingly. In that case, the system randomly selects
a strategy. Eventually the system will guess correctly and accomplish its task.

Synthesizing Randomized Strategies

The thesis developed a formalism for generating guaranteed plans to include
randomizing decisions and actions. Of particular interest were tasks for which there
existed strategies that would locally make progress on the average, relative to some
progress measure defined on the system’s state space. It was shown that any strategy
whose behavior may be modelled as a Markov chain inherently defines a progress
measure relative to which it makes progress. The compiementary problem, of finding
a useful progress measure for a given task, is more difficult. Sometimes distance
provides a natural progress measure, but generally a strategy will only make progress
on some subset of the state space for such a progress measure. An interesting question
is whether it is possible to transform a task description into a progress measure from
which one can build a fast randomized strategy. In general one suspects that this
problem is no easier than the problem of finding guaranteed strategies or optimal
strategies. However, for certain classes of tasks an advantage may be gained by
viewing the task in terms of progress measures and nominal plans. This is an open
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area.

More Extensive Knowledge States

Although the thesis developed the randomizing formalism in some generality, the
specific examples considered were essentially assembly operations involving the
attainment of two-dimensional regions, assuming position sensors and first-order
dynamics. An interesting project would be to include force information in the
randomizing decisions, to make extended use of history, and to consider more
complicated tasks. A related question is whether anything is to be gained by defining
progress measures on the space of knowledge states. This is the natural setting for
such measures once a strategy retains history in making decisions.

Reducing Brittleness

One view of randomized strategies is that they provide a means for reducing the
sensitivity of a task solution to initial conditions. After all, the whole approach is
based on not knowing exactly which preconditions are satisfied. This view may be
carried further to include other parameters of the system. The example of section
2.4 showed how the sensitivity to sensing biases could be avoided by executing
randomizing motions, albeit at the cost of increased convergence time. Other
parameters, such as the shape and location of objects in the environment, or the
specification of the dynamics, may also be subject to uncertainty. It is desirable
to ronstruct strategies that need not know precisely the values of these pararmeters.
Donald’s [Don89] work on model error forms a natural domain in which to explore
randomizing approaches for dealing with uncertainties in the task specification itself.
See also {(KR]. An interesting open question is whether it is possible to build general
strategies from simple and incomplete task descriptions. Randomization may provide
part of the answer via its ability to blur the sensitivity to detail.

6.2 Applications

Chapter 2 discussed some of the intended applications of randomized strategies. The
assembly and manipulation of objects, mobile robot navigation, and the design of
parts and sensors are broad domains of applicability. Let us now relate some of the
results of the thesis to these domains.

6.2.1 Assembly
A Formal Framework For Existing Applications

Randomization plays an important role in assembly operations. Randomization
appears naturally in the form of noise, both in sensing and control. Furthermore,
it is sometimes added purposefully in the execution of assembly strategies. Vibrating
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a part in order to overcome stiction is a common example. Spiral searches to locate
some feature, while implemented deterministically, are similar to randomization both
in their intent, namely to compensate for unknown initial conditions, as well as in their
execution, due to control uncertainty. Finally, vibratory bowl feeders actively make
use of randomization by purposefully tossing an improperly oriented part back into
the bottom of the bowl. The intent is to obtain probabilistically a better orientation
of the part on its next pass through the bowl’s orienting track.

We see therefore that randomization is a useful tool present in the solution of
established manipulation and assembly tasks. One contribution of this thesis has
been to provide a formal basis for the use of randomization. In particular, the thesis
developed a framework for synthesizing randomized strategies. Within this framework
randomization may be viewed as simply another operator, along with the operators
of sensing and action. All three operators are essential to the solution of general
assembly tasks.

Utilizing Available Sensors

One of the themes of the thesis was to explere the conditions under which progress
towards task completion is possible on average. We implemented a peg-in-hole task
using a simple camera system to sense position, and we analyzed the convergence
properties of a simple feedback loop with a position sensor subject to unbiased
Gaussian error. In both cases the task strategy would make use of the position
sensor when the sensor provided information that permitted progress towards the
goal, and otherwise the strategy would ~xecute a random motion. This combination
of sensing and randomization allowed the task to be solved probabilistically under
conditions for which no bounded-step guaranteed strategy existed. Not only did the
randomization ensure eventual convergence, but for a wide range of initial conditions
the sensing information ensured that the convergence was actually rapid.

The moral to be taken from these examples is that a position sensor can
provide considerably more information than is made use of in a bounded-step
guaranteed strategy. While this information cannot always be interpreted correctly
in a guaranteed sense, the combination of randomization and sensing can in many
instances naturally sort out the useful from the useless sensor readings. For instance,
by randomizing its position, a system can compensate for unknown sensing biases,
and in some instances naturally position itself actually to take advantage of the biases.

Using Additional Sensors

Ultimately one should explore more complex sensors. In particular, it is clear that
force sensors are useful in disambiguating contact conditions. [Sim79] points out
that the extra information to be gained from position sensors by using probabilistic
techniques, such as Kalman filters, produces estimates with the same order of
magnitude in precision as the sensors themselves. In contrast, two orders of magnitude
of improved precision are usually required to meet standard rlearance ratios of
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assembled parts. By adding force sensors one can enhance greatly the net sensing
precision. In terms of randomized strategies and simple feedback loops, this barrier
to the improvement in the precision of position sensors alone makes itself visible in
the direction of the expected motion of the system. Ultimately, as the system begins
to operate below the resolution of its sensors, the randomizing aspect of the strategy
dominates the sensing information, and the system drifts away from the goal on
average. An unexplored question is how the addition of force sensors could be used
to improve the convergence of a randomizing feedback loop.

Eventual Convergence in the Context of Grasping

Despite the advantage of better sensors in terms of improved precision, the sensors
can sometimes be difficult to interpret. For instance, consider a multi-fingered hand
equipped with torque sensors at each of several tendon-controlling motors. A set of
torque readings from these sensors may be difficult to map back onto an interpretation
in the world. Fortunately, better sensors are not required in a strict sense to ersure
goal attainment. Randomization ensures eventual goal attainment. [This assumes
that the randomization is so chosen as to cover the space of interest in finite time, and
that the goal is recognizable]. Again, the point is that a randomized strategy makes
use of sensing information when it can, but does not stop cold once this information
ceases to be useful. This is an important property.

In the multi-fingered hand example, the task might consist of grasping a part
stably. If the positions of the fingers relative to the part are not known precisely, or if
the dvnamic properties of the part itself are not known precisely, then it may not be
possible to grasp the part stably on a first attempt. For instance, the center of mass
might be in an unexpected location. While one can imagine a series of test operations
based on force information to ascertain the dynamic properties of the part, such a
battery of tests may not be feasible, due perhaps to a lack of sensors or an inability
to interpret them. If this is the case, a simpler strategy might consist of grasping the
part by randomly selecting a grasp configuration from a set of grasp configurations,
where the set has been chosen to contain the desired but unknown grasp. Although
the robot may drop the part a few times, eventually it will select the correct grasp
configuration, and the task will be accomplished.

From a practical point of view this discussion suggests that one need not rely
heavily on complicated sensors. We know from the work on sensorless manipulation
(see [Mas85]) that task mechanics and predictive ability can often be used to solve
tasks well below the resolution of available sensors. The thesis suggests that another
approach is to use randomization.

Some Assembly Tasks
Some other classes of tasks in which randomization is useful include:

e Parts Orienting. Many parts, in particular, polyhedral parts, will assume
one of a small set of configurations when dropped onto a tabletop under the
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influence of gravity. One approach for orienting a part is to drop it onto a table,
then perhaps shake the table or the part until the part winds up ic the desired
configuration. The advantage of this approach is that it reduces the sensing and
manipulation requirements of the orienting system. Instead of being required to
orient the part from a possibly arbitrary configuration, the system need simply
be able to randomize the part’s configuration sufficiently to ensure that the
desired orientation is achieved. Additionally, the system need simply be able
to recognize the part in its goal orientation. The disadvantage of this approach
is that it may require a long time to succeed if the desired orientation is one
that occurs infrequently when the part is dropped. More work is required on
investigating the usefulness of this approach. Again, we mention the vibratory
bowl feeder as a paradigm similar to this approach for orienting parts. [See
[BRPM] in this context.]

In terms of the thesis these operations correspond to the nearly sensorless tasks
discussed in section 3.13. Sensing is used mainly to signal goal attainment, while
randomization 1s used to ensure eventual convergence. It is up to a planning
system that understands the mechanics of the domain, in this case the dynamics
of dropped parts, to suggest a sufficient set of randomizing motions.

Fine Motions. One of the applications of randomization is in the final phase of
a complex operation. Generally the available control and sensing system: will be
good enough to complete the gross motion operations of the task, but the fine
motions may be difficult to control or observe. A simple example in the human
domain is given by the task of opening an electric car window to a desired
width in order to adjust the airflow to the rear passengers to a comfortable
level. 1t is impossible generally to position the window precisely on a single
attempt. Indeed, the precise opening may not even be known ahead of time.
By randomly moving the window back and forth about the desired opening, one
can quickly open the window properly.

Another example is given by the adjustment of interior wall sections during the
construction of a house. Once a wall segment has been erected vertically, it is
nearly impossible to execute any precise motions. This is because the wall is
wedged tightly between the ceiling and the floor. Nonetheless, precise motions
are required to ensure that the wall segment is oriented properly in the vertical
and horizontal directions. The standard approach is to tap portions of the wall
with a large hammer, then consult a scale or plumb to determine the orientation
of the wall segment. The effect of the tapping operations 1s to produce a random
walk about the desired orientation. The scale or plumb plays the role of a sensor
that serves both to indicate the desired direction of motion as well as to signal
goal attainment.

Within the domain of assembly of nearly-rigid parts there are numerous
examples that share common characteristics with theses two examples from the
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human world. Tapping parts that are slightly wedged is a common operation.
Another common operation is searching for a pin or hole prior to a mating task.

The results of this thesis suggest that goal convergence is rapid if progress
towards the desired set point can be made on average. Goal convergence in
this case means attaining some small region about the set point. If we take
the simple feedback loop of chapter 5 as a guide, one approach for obtaining
average progress is to execute motions whose magnitude is nearly proportional
to the sensed distance from the goal. This corresponds to the intuitive idea
of moving quickly towards the goal when one is far away, and moving slowly
otherwise. In the window example one modulates the time interval during which
the window is being either opened or closed, while in the wall-tapping example
one modulates the impulse of the tapping operations. Once the window is near
the desired opening or the wall is nearly vertical, then it may become difficult
to control the velocity of the system finely enough to ensure average progress.
As in the feedback example of chapter 5. once the system is close to the goal,
it effectively relies entirely on randomization to attain the goal.

6.2.2 Mobile Robots

An important characteristic of mobile robots is their existence in an uncertain world.
Not only is the robot’s initial model of the world incomplete or iraccurate, but the
world itself is changing as people and objects move about. Uncertainty is thus a
fundamental characteristic of the mobile robot domain.

There is considerable room for work in applying randomizing techniques to mobile
robots. Promising areas include navigation, map building, and fe<ture recognition.

Randomization for navigation can help reduce the knowledge reyuirements of a
robot. Robots that use local algorithms in making decisions about global navigation
may become trapped in some deterministic state or cycle of states. Randomization
can prevent this trap from persisting forever. Even locally this may be useful. for
instance when a robot finds itself in a tight corner, unable to determine the proper
direction to turn in order to escape. Amnother example, taken from probabilistic
broadcast networks, is given by the problem of several identical robots meeting at the
intersection c¢f two or more hallways. If right of way rules are unclear or inapplicable
it makes sense to arbitrat- *hese right of way rules by randomization. Each robot
simply executes a strategy . .at randomly and repeacedly tries to proceed through
the intersection or gives way for another robot to proceed.

Randomization may be of use in map building, by weakening the requirement
for accurate maps. This is a difficult area of research, with potentially promising
results. A possible approach is to view a map as one would a noisy sensor reading.
Some portions of the map provide clearly useful information, while others do not.
Randomization is used to compensate for the i.complete or inaccurate portions of the
man. This is an application cf randomization as a means of blurring environmental
details. As a trite example, suppose that a robot is unsure which offices along a
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hallway house graduate students and which house professors. Indeed, the state of the
offices might actuaily be in flux over time. A map might nonetheless contain enough
information to depict the topology of the office building as well as the ratio of graduate
students to professors. The robot could then use this information to randomly select
an office in such a way as to maximize the probability of encountering a professor.
A similar problem is given by the task of finding a free Xerox machine in a building
in which there are varying numbers of machines on each fioor, not all of which are
necessarily free or working. This is a classic problem out of decision analysis.

The examples listed so far are fairly simple and at a high level. However they
have their counterparts within the internal implementation of the robot. Indeed, one
problem with robot systems is the fusion of multiple sensory information. This is
often a complicated process, particularly if one of the sensors is at the limit of its
range of applicability. For instance, a sonar sensor may indicate the presence of an
obstacle in front of the robot, which an infrared sensor may not see. One possibility
is simply to arbitrate between the sensors in a random fashion. In short, the robot
imagines the presence or absence of certain features in the environment, based on
randomly chosen sensory information. There are issues involved here in deciding
how often to arbitrate, and whether it is even safe to arhitrate randomly. These are
precisely the issues addressed by the planning methodology presented in this thesis.
In particular. the connectivity assumption of section 3.2.7 addresses the safety issue.
The backchaining process using the operator SELECT of section 3.9 addresses the
issue of when to randomize. However. much work re aains in mapping these general
techniques into the mobile robot domain.

6.2.3 Design

The design of parts and sensors stands as a task complementary to the task of
planning assembly motions. Clearly the design problem is much less constrained:
a priort the space of possible designs has an enormously large number of degrees
of freedom. However. much can be learned by considering how particular assembly
strategies succeed or fail. The class of randomized strategies provides another clue to
the efficient design and usage of parts and sensors.

Sensor Design: A Sensor Placement Example

As an example consider again a random walk on a two-dimensional grid. As we
learned in chapter 3 the natural tendency of the random walk is to move away from
the origin whenever it is positioned on one of the axes of the grid. More generally,
a continuous random walk in a higher dimensional space has a natural tendency to
drift away from a goal region situated at the origin. Taking the two-dimensional
random walk as an example, suppose that we installed a couple of one-bit sensors
on the axes of the grid. These might be implemented as light beams parallel to the
grid axes. Then one could reduce the two-dimensional random walk to a pair of
one-dimensional random walks. Recall that in a one-dimensional random walk the
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average motion progress of the system is zero, rather than away from the goal. Thus
if there is any additional sensing, the system will naturally move towards the goal on
average.

Specifically, one would let the systcm perform a two-dimensional randciu walk
until it crossed one of the light beams. Since the light beams cover two lines, the
system effectively behaves as if it were performing a one-dimensional random walk
with a goal recognizer at the origin. Upon observing that a light beam has been
crossed, and remembering which one, the system can then perform a one-dimensional
random walk along the appropriate axis until the goal at the center of the two-
dimensional grid is attained. The reliability with which the system can perform the
one-dimensional random walk depends of course on the control uncertainty. All the
sensing in the world is of no use if the control uncertainty is bad enough. However,
assuming reliable control but possibly poor sensing, this example demorstrates how an
understanding of the capabilities of a randomized strategy may be used for designing
sensor placements.

Generalizations of this example involve the reduction of higher dimensional
random walks to a series of one-dimensional random walks either by the addition
of sensors in appropriate locations or the modification of strategies.

Parts Design

We have already alluded to the design of part shapes in the discussion of part
orienting by dropping. An understanding of the dynamic properties and stable resting
configurations of differently shaped objects is essential to the design of parts shaped
for assembly. Randomization provides a context in which to consider these dynamic
properties. Said differently, randomization provides a means of assessing the natural
motions of a part. This information is useful for it describes the possible motions of
a part in the presence of control error.

Extending the analysis of natural part motions in order to actually design parts is
still an open area. T'he study of randomization as a means of facilitating this process
should be a fertile area of future research.

A design criterion related to the notion of natural behavior is made evident by the
implementation of the peg-in-hole task and by the example of section 2.4. In these
cases. randomization helped the system find a path or region from which progress
towards the goal was rapid. This success was possible in these examples because
of the system’s ability to approach the goal from an arbitrary direction. Generally,
that might not be possible. However. by considering the manner in which a system
uses information, the regions in which it randomizes its motions, and the regions of
fast convergence. a designer can determine whether or not a system will naturally
gravitate towards regions of fast convergence. This analysis can then be used to
redesign the system if necessary.
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6.3 Further Future Work

We have indicated above numerous areas in which randomization may prove fruitful.
Let us now briefly indicate some very specific topics in the thesis that deserve further
attention.

6.3.1 Task Solvability

One of the motivations for this thesis was to work towards an understanding of the
class of tasks solvable by different repertoires of actions. The appeal of randomized
strategies lies in their simplicity and pervasive presence. We have shown that
randomized strategies can increase the class of solvable tasks over those solvable by
bounded-step guaranteed strategies. We have also indicated the manner in which
randomization can facilitate task solutions, even when bounded-step guaranteed
strategies exist. Nonetheless, there is still missing a language in which one can talk
about task solvability and compare different repertoires of actions. Even more difficult
is the actual characterization of tasks and strategies in terms of each other. Much
work remains to be done in this area.

6.3.2 Simple Feedback Loops
Conditions of Rapid Convergence

We analyzed a randomized simple feedback loop for the two-dimensional task of
attaining a circular region in the plane. The strategy was formulated in general terms.
However, the results that we obtained indicating fast convergence were numerical
results that assumed particular uncertainty values. While the qualitative behavior
of the system is similar for varying uncertainty values, it is desirable to obtain a
set of explicit conditions formulated in terms of arbitrary uncertainty variables that
characterize the regions of fast convergence. Part of the difficulty in determining these
conditions is that one of the integrals defining the expected progress of the feedback
loop does not possess an analytic closed-form solution. It may be useful in elucidating
these conditions to consider lower or upper bounds for this integral.

Biases

The analysis of the simple feedback loop assumed unbiased Gaussian errors. This
simplified the problem to a one-dimensional problem formulated in terms of the
distance of the system from the origin. We discussed the qualitative behavior of the
system once biases are introduced. Again, it would be useful to determine explicit
conditions characteri:ing the regions of fast convergence. The difficulty here is two-
fold. First, introducing biases requires that one solve a two-dimensional diffusion
equation. And second. recall that the coefficients of this partial differential equation
are determined pointwise by a double integral. Without velocity biases the outer
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integral possesses no analytic description. In the presence of some velocity biases,
however, even the inner integral is an elliptic integral.

More Complicated Tasks

More work needs to be done on solving tasks using simpie feedback ioops. As a first
step, one should consider the task of attaining a spherical region in n-dimensional
space, with n greater than two. It would be interesting to see whether the degradation
of convergence times is simply a function of the increased drift of randomized
strategies in higher dimensional spaces, or whether sensing degrades as well. Another
direction to explore is the solution of tasks in which line-of-sight distance is not a
good progress measure. One question is whether is 1s possible to use distance to the
goal as a progress measure. If the path to the goal bends a lot, it may be impossible to
guarantee progress. Finally, a third direction is the exploration of more complicated
sensors and sensor models than those assumed in this thesis. Symmetric error balls
are not always the best approximation to the error in a sensor. Said differently, using
an error ball may be overly conservative.

Diffusion Approximation

More work is required in the modelling of simple feedback loops. Of particular interest
is the extent to which diffusion approximations to randomized strategies are possible.
An important criterion is the reliability of predictions based on these approximations.

6.3.3 Learning

We showed through the peg-in-hole implementation and its various abstractions that
a system can compensate for sensing biases by randomization. The system employed
a simple randomized feedback loop. If one permits the system to retain some history
then it can actually learn from its observations, and obtain an estimate of the bias.
This estimate may then be used to improve performance. A Kalman filter is one
approach for retaining history and obtaining an estimate of the bias. However, one
can imagine weaker approaches that do not put as much faith in their estimates.
A weaker approach might try to follow the philosophy of preparing for worst-case
scenarios. This is a philosophy that underlies the guaranteed-planning approaches
and that also underlies the decision by which a simple feedback loop makes progress.
A possible learning approach might consist of simply recognizing that convergence
tends to be fast from certain regions in state space. In other words, no explicit
estimate is made of the sensing bias. Rather, it is estimated indirectly, by delineating
certain regions that might serve as subgoals, since convergence from them is probably
quick. In this case we are really talking about history across multiple iterations of
a strategy as opposed to history within a strategy, though both are possible. Much
work remains to be done in learning based on randomization.
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6.3.4 Solution Sensitivity

Randomization may be thought of as a perturbation in the space of task solutions.
By randomizing, a system hopes to find a solution that matches the unknown initial
conditions of the world. An interestiug inverse problem is to determine the manner in
which a task solution must chauge ia order to remain applicable as one perturbs the
initial conditions of the system. It seems that there are critical values of uncertain
parameters at which task solutions change drastically. Randomization offers a means
of retaining an inapplicable solution by perturbing around this solution. However, the
perturbations may have to be great. Whether the nature of the perturbation required
to solve the task can be inferred from a study of the sensitivity of task solutions to
task parameters is an interesting and open question. Answering this question is likely
also to further advance the characterization of task solvability and strategy scope.
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